

1

Predicting Corporate Forward 12 Month Earnings
Michael F. Korns

The Shang Grand Tower U17E

98 Perea Street,
Legazpi Village, Makati 1229

Manila, Philippines
+639178171756

mkorns@korns.com

ABSTRACT

Valuation of securities via their forward 12 month price earnings

ratio (ftmPE) is a very common securities valuation method in the

industry. Obviously the ftmPE valuation depends heavily on the

estimate of forward 12 month corporate earnings per share

(ftmEPS). Obvious inputs to the ftmEPS prediction process are the

past earnings time series plus one or more analyst predictions.

Previously only linear regression and linear classification and

regression trees (CART) have been available as techniques for

analyzing these inputs. Nonlinear symbolic regression (SR) has

not been used because of SR’s difficulties optimizing imbedded

constants. However, recent integrations of swarm intelligence (SI)

with symbolic regression support a level of maturity and

sophistication making nonlinear regression and nonlinear CART

available for real world financial applications.

Automated ftmEPS prediction involving the analysis of many

securities, often involves multiple training regressions each on

hundreds of thousands of training examples, plus there is always a

timeliness issue, so analytic tools must be strong and thoroughly

matured. Symbolic regression systems incorporating only genetic

programming are shown to be inadequate for optimizing

imbedded constants; but, symbolic regression systems integrating

swarm intelligence with genetic programming are shown to be

quite effective.

This paper examines several different well known swarm

intelligence algorithms as integrated components in an enhanced

symbolic regression system. Each swarm algorithm is integrated

into the symbolic regression system, to predict the forward 12

month earnings of approximately 1,500 companies over a twenty

year period (1990 thru 2009). Utilizing both classification and

regression scores in the training and testing periods, each swarm

algorithm is analyzed for efficacy. Finally, all of the swarm

algorithms are allowed to compete simultaneously, in multiple

islands, to predict ftmEPS. Again utilizing both classification and

regression scores in the training and testing periods, this

competitive approach is compared with the best individual swarm

algorithm. The goal is to aid in the development of a robust,

mature, symbolic regression system.

Keywords

Value investing, symbolic regression, swarm intelligence, genetic

programming, nonlinear regression, CART, particle swarm,

differential evolution, bees algorithm.

1. Introduction
The discipline of Symbolic Regression (SR) has matured

significantly in the last few years. There is at least one

commercial package on the market for several years

(http://www.rmltech.com/). There is now at least one well

documented commercial symbolic regression package available

for Mathematica (www.evolved-analytics.com). There is at least

one very well done open source symbolic regression package

available for free down load (http://ccsl.mae.cornell.edu/eureqa).

In addition to our own ARC system [6], currently used internally

for massive financial data nonlinear regressions, there are a

number of other mature symbolic regression packages currently

used in industry including [8] and [9]. Plus there is an interesting

work in progress by McConaghy [10].

Nonlinear symbolic regression (SR) has not been widely applied

to financial problems because of SR’s difficulties optimizing

imbedded constants. Optimizing imbedded constants is often a

critical requirement in many financial applications. However,

recent integrations of swarm intelligence (SI) with symbolic

regression support a level of maturity and sophistication making

nonlinear regression and nonlinear CART available for real world

financial applications.

In this chapter we investigate the integration of two popular

swarm intelligence algorithms (Bees, and Particle Swarm), and

one popular evolutionary computation algorithm (Differential

Evolution) with standard genetic programming symbolic

regression to help optimize imbedded constants in a real world

financial application: the prediction of forward 12 month earnings

per share. We make the observations: that standard genetic

programming does not optimize imbedded constants well; that

swarm intelligence algorithms are adept at optimizing constants;

and that allowing imbedded constants in SR greatly increases the

size of the search space.

In the body of the chapter it is shown that the differences between

the three popular constant managing algorithms is minimal for

optimizing imbedded constants; yet without any swarm

intelligence standard GP symbolic regression fails to optimize

imbedded constants effectively.

We proceed with a general introduction to symbolic regression

and the size of the search space.

Symbolic Regression is an approach to general nonlinear

regression which is the subject of many scholarly articles in the

Genetic Programming community. A broad generalization of

general nonlinear regression is embodied as the class of

Generalized Linear Models (GLMs) as described in [11]. A GLM

is a linear combination of I basis functions Bi; i = 1,2, … I, a

2

dependent variable y, and an independent data point with M

features x = <x1, x2, x3, …xm>: such that

1 y = γ(x) = c0 + ∑ (x)

 + err

As a broad generalization, GLMs can represent any

possible nonlinear formula. However the format of the

GLM makes it amenable to existing linear regression

theory and tools since the GLM model is linear on each of

the basis functions Bi.

For a given vector of dependent variables, Y, and a vector

of independent data points, X, symbolic regression will

search for a set of basis functions and coefficients which

minimize err. In [12] the basis functions selected by
symbolic regression will be formulas as in the following
examples:

2 B1 = x3
3 B2 = x1+x4
4 B3 = sqrt(x2)/tan(x5/4.56)
5 B4 = tanh(cos(x2*.2)*cube(x5+abs(x1)))

If we are minimizing the least squared error, LSE, once a suitable
set of basis functions {B} have been selected, we can discover
the proper set of coefficients {C} deterministically using
standard univariate or multivariate regression. The value of
the GLM model is that one can use standard regression
techniques and theory. Viewing the problem in this fashion,
we gain an important insight. Symbolic regression does not
add anything to the standard techniques of regression. The
value added by symbolic regression lies in its abilities as a
search technique: how quickly and how accurately can SR find
an optimal set of basis functions {B}.

The immense size of the search space provides ample need for

improved search techniques In standard Koza-style tree-based

Genetic Programming [12] the genome and the individual are the

same Lisp s-expression which is usually illustrated as a tree. Of

course the tree-view of an s-expression is a visual aid, since a Lisp

s-expression is normally a list which is a special Lisp data

structure. Without altering or restricting standard tree-based GP in

any way, we can view the individuals not as trees but instead as s-

expressions such as this depth 2 binary tree s-exp: (/ (+ x2 3.45) (*

x0 x2)), or this depth 2 irregular tree s-exp: (/ (+ x2 3.45) 2.0).

In standard GP, applied to symbolic regression, the non-terminal

nodes are all operators (implemented as Lisp function calls), and

the terminal nodes are always either real number constants or

features. The maximum depth of a GP individual is limited by the

available computational resources; but, it is standard practice to

limit the maximum depth of a GP individual to some manageable

limit at the start of a symbolic regression run.

Given any selected maximum depth k, it is an easy process to

construct a maximal binary tree s-expression Uk, which can be

produced by the GP system without violating the selected

maximum depth limit. As long as we are reminded that each f

represents a function node while each t represents a terminal node,

the construction algorithm is simple and recursive as follows.

U0: t

U1: (f t t)

U2: (f (f t t) (f t t))

U3: (f (f (f t t) (f t t)) (f (f t t) (f t t)))

Uk: (f Uk-1 Uk-1)

Any basis function produced by the standard GP system will be

represented by at least one element of Uk. In fact, Uk is

isomorphic to the set of all possible basis functions generated by

the standard GP system.

Given this formalism of the search space, it is easy to compute the

size of the search space, and it is easy to see that the search space

is huge even for rather simple basis functions. For our use in this

chapter the function set will be the following functions: F = {+ - *

/ abs sqrt square cube cos sin tan tanh log exp max min ℵ}

(where ℵ(a,b) = ℵ(a) = a). The terminal set is the features x0

thru xm and the real constant c, which we shall consider to be 264

in size. Where |F| = 17, M=20, and k=0 , the search space is S0 =

M+264 = 20+264 = 1.84x1019. Where k=1, the search space is S1 =

|F|*S0*S0 = 5.78x1039. Where k=2, the search space grows to S2 =

|F|*S1*S1 = 5.68x1080. For k=3, the search space grows to S3 =

|F|*S2*S2 = 5.5x10162. Finally if we allow three basis functions

B=3 for financial applications, then the final size of the search

space is S3*S3*S3 = 5.5x10486.

Clearly even for three simple basis functions, with only 20

features and very limited depth, the size of the search space is

already very large; and, the presence of real constants accounts for

a significant portion of that size. For instance, without real

constants, S0 = 20, S3 = 1.054x1019, and with B=3 the final size of

the search space is 1.054x1057. It is our contention that since real

constants account for such a significant portion of the search

space, symbolic regression would benefit from special constant

evolutionary operations. Since standard GP does not offer such

operations, we investigate the enhancement of symbolic

regression with swarm intelligence algorithms specifically

designed to evolve real constants.

As we apply our enhanced symbolic regression to an important

real world investment finance application, the prediction of

forward 12 month earnings per share, we discover a number of

accuracy, believability, and regulatory issues which must be

addressed. Solutions for those issues are provided and we proceed

to apply an enhanced symbolic regression algorithm to the

problem of estimating forward corporate earnings per share.

This chapter begins with a discussion of Symbolic Regression
theory in Section (2) and with important theoretical issues in
Section (3). Methodology is discussed in Section (4), then
Sections (5) through (10) discuss the algorithms for Standard
GP Symbolic Regression and the enhancements for merging
swarm intelligence with standard GP symbolic regression. In
Section (11) we compare the performance of standard GP
symbolic regression with enhanced symbolic regression on a
set of illustrative sample test problems. Sections (12) thru
(15) give a background in investing and discuss the essential
requirements for applying symbolic regression to predicting
forward 12 month earnings in a real world financial setting.
Finally, Sections (17) thru (19) compare the performance of
enhanced symbolic regression with the swarm algorithm
being Differential Evolution, the bees Algorithm, or Particle
Swarm.

3

2. Symbolic Regression Theory
In standard Koza-style symbolic regression [12], a Lisp s-

expression is manipulated via the evolutionary techniques of

mutation and crossover to produce a new s-expression which can

be tested, as a basis function candidate in a GLM. Basis function

candidates that produce better fitting GLMs are promoted.

Mutation inserts a random s-expression in a random location in

the starting s-expression. For example, mutating s-expression (4)

we obtain s-expression (4.1) wherein the sub expression “tan” has

been randomly replaced with the sub expression “cube”.

Similarly, mutating s-expression (5) we obtain s-expression (5.1)

wherein the sub expression “cos(x2*.2)” has been randomly

replaced with the sub expression “abs(x2+ x5)”.

4 B3 = sqrt(x2)/tan(x5/4.56)
4.1 B5 = cos(x2)/cube(x5/4.56)
5 B4 = tanh(cos(x2*.2)*cube(x5+abs(x1)))
5.1 B6 = tanh(abs(x2+ x5)*cube(x5+abs(x1)))

Crossover combines portions of a mother s-expression and a

father s-expression to produce a child s-expression. Crossover

inserts a randomly selected sub expression from the father into a

randomly selected location in the mother. For example, crossing

s-expression (5) with s-expression (4) we obtain child s-

expression (5.2) wherein the sub expression “cos(x2*.2)” has

been randomly replaced with the sub expression “tan(x5/4.56)”.

Similarly, again crossing s-expression (5) with s-expression (4)

we obtain another child s-expression (5.3) wherein the sub

expression “x5+abs(x1)” has been randomly replaced with the

sub expression “sqrt(x2)”.

4 B3 = sqrt(x2)/tan(x5/4.56)
5 B4 = tanh(cos(x2*.2)*cube(x5+abs(x1)))
5.2 B7 = tanh(tan(x5/4.56)*cube(x5+abs(x1)))
5.3 B8 = tanh(cos(x2*.2)*cube(sqrt(x2)))

These mutation and crossover operations are the main tools of

standard GP, which functions as described in Algorithm 2,

randomly creating a population of candidate basis functions,

mutating and crossing over those basis functions repeatedly while

consistently promoting the most fit basis functions. The winners

being the collection of basis functions which receive the most

favorable least square error in a GLM with standard regression

techniques.

3. Theoretical Issue
A theoretical issue with standard GP symbolic regression is the

poor optimization of embedded constants under the mutation and

crossover operators. Notice that in basis functions (4) and (5)

there are real constants embedded inside the formulas. These

embedded constants, 4.56 and .2, are quite important. That is to

say that basis function (4) behaves quite differently than basis

function (4.2) while basis function (5) behaves quite differently

than basis function (5.4).

4 B3 = sqrt(x2)/tan(x5/4.56)
4.2 B9 = sqrt(x2)/tan(x5)
5 B4 = tanh(cos(x2*.2)*cube(x5+abs(x1)))
5.4 B10 = tanh(cos(x2)*cube(x5+abs(x1)))

The behavior can be quite startling. For instance, if we generate a

set of random independent variables for <x1, x2, x3, …xm> and we

set the dependent variable, y = sqrt(x2)/tan(x5/4.56), then a
regression on y = sqrt(x2)/tan(x5) returns a very bad LSE. In

fact the bad regression fit continues until one regresses on y =

sqrt(x2)/tan(x5/4.5). It is only until one regresses on y =

sqrt(x2)/tan(x5/4.55) that we get a reasonable LSE with an R-
Square of .56. Regressing on y = sqrt(x2)/tan(x5/4.555)
achieves a better LSE with an R-Square of .74. Of course
regressing on y = sqrt(x2)/tan(x5/4.56) returns a perfect LSE
with an R-Square of 1.0.

Clearly, in many cases of embedded constants, there is a very
small neighborhood, around the correct embedded constant,
within which an acceptable LSE can be achieved.

In standard Koza-style symbolic regression [12], the mutation and

crossover operators are quite cumbersome in optimizing

constants. As standard GP offers no constant manipulation

operators per se, the mutation and crossover operators must work

doubly hard to optimize constants. For instance, the only way to

optimize the embedded constant in s-expression (5) would be to

have a series of mutations or crossovers which resulted in an s-

expression with multiple iterative additions and subtractions as

follows [12].

4 B3 = sqrt(x2)/tan(x5/4.56)
4.2 B3 = sqrt(x2)/tan(x5/(1.0+3.2))
4.3 B3 = sqrt(x2)/tan(x5/((1.0+3.2)+.3))
4.4 B3 = sqrt(x2)/tan(x5/(((1.0+3.2)+.3)+.07))
4.4 B3 = sqrt(x2)/tan(x5/((((1.0+3.2)+.3)+.07)-.01))

Characteristically, the repeated mutation and crossover operations

which finally realize an optimized embedded constant also greatly

bloat the resulting basis function with byzantine operator

sequences [18]. On the other hand swarm intelligence techniques

are quite good at optimizing vectors of real numbers. So the

challenge is how to collect the embedded constants found in a GP

s-expression into a vector so they can be easily optimized by

swarm intelligence techniques.

Recent advances in symbolic regression technology including

Abstract Expression Grammars (AEGs) [3], [4], [5], [6], and [13]

can be used to control bloat, specify complex search constraints,

and expose the embedded constants in a basis function so they are

available for manipulation by various swarm intelligence

techniques suitable for the manipulation of real numeric values.

This presents an opportunity to combine standard genetic

programming techniques together with swarm intelligence

techniques into a seamless, unified algorithm for pursuing

symbolic regression.

The focus of this chapter will be an investigation of swarm

intelligence techniques, used in connection with AEGs, which can

improve the speed and accuracy of symbolic regression search,

especially in cases where embedded numeric constants are an

issue hindering performance.

4. Methodology
Our methodology is influenced by the practical issues in applying

symbolic regression to a real world investment finance problem.

First there is the issue that current standard GP symbolic

4

regression cannot solve selected simple test problems required for

the successful application of SR to predicting forward corporate

earnings per share. This includes the methodological challenge of

enhancing standard GP with swarm intelligence and modifying

the necessary encodings to accommodate both GP and swarm

intelligence algorithms. Second there is the issue of adapting

symbolic regression to run in a real world financial application

with massive amounts of data. Third there is the issue of

modifying symbolic regression, as practiced in academia, to

conform to the very difficult U.S. Securities Exchange

Commission regulatory environment.

Sections (5) thru (10) discuss the methodological challenge of

enhancing standard GP symbolic regression so that it can be

effective when applied to the real world problem of predicting

forward 12 month corporate earnings per share. In Section (11),

the behavior of GP symbolic regression with and without the

enhancement of swarm intelligence is compared on a few sample

test problems.

For the sample test problems, we will use only statistical best

practices out-of-sample testing methodology. A matrix of

independent variables will be filled with random numbers. Then

the model will be applied to produce the dependent variable.

These steps will create the training data. A symbolic regression

will be run on the training data to produce a champion estimator.

Next a matrix of independent variables will be filled with random

numbers. Then the model will be applied to produce the

dependent variable. These steps will create the testing data. The

estimator will be regressed against the testing data producing the

final LSE and R-Square scores for comparison.

Sections (17) thru (19) compare the behavior of GP symbolic

regression with and without swarm intelligence on a real world

problem namely the forward estimation of corporate earnings on a

database of stocks from 1990 thru 2009.

For the forward estimation of corporate earnings, this paper uses

an historical database of approximately 1200 to 1500 stocks with

daily price and volume data, weekly analyst estimates, and

quarterly financial data from Jan 1986 to the present. The data has

been assembled from reports published at the time, so the

database is highly representative of what information was

realistically available at the point when trading decisions were

actually made.

From all of this historical data, twenty years (1990 thru 2009)

have been used to support the results shown in this research. This

two decade period includes a historically significant bull market

decade followed by an equally historically significant bear market

decade.

Multiple vendor sources have been used in assembling the data so

that single vendor bias can be eliminated. The construction of this

point in time database has focused on collecting weekly

consolidated data tables, collected every Friday from Jan 3, 1986

to the present, representing detailed point in time input to this

study and cover approximately 1200 to 1500 stocks on a weekly

basis. Each stock record contains daily price and volume data,

weekly analyst estimates and rankings, plus quarterly financial

data as reported. The primary focus is on gross and net revenues.

The efficacy of several different swarm intelligence techniques

are examined by running a full experimental protocol for each

technique. Standard genetic programming, without swarm

intelligence techniques, will be the base line for this study. We are

interested in determining if the addition of swarm intelligence

techniques improves symbolic regression performance – and if so,

which swarm techniques perform best.

Our historical database contains 1040 weeks of data between

January 1990 and December 2009. In a full training and testing

protocol there is a separate symbolic regression run for each of

these 1040 weeks. Each SR run consists of predicting the ftmEPS

for each of the 1200 to 1500 stocks available in that week. A

sliding training/testing window will be constructed to follow a

strict statistical out-of-sample testing protocol.

For each of the 1040 weeks, the training examples will be

extracted from records in the historical trailing five years behind

the selected record BUT not including any data from the selected

week or ahead in time. The training dependent variable will be

extracted from the historical data record exactly 52 weeks forward

in time from the selected record BUT not including any data from

the selected week or ahead in time. Thus, as a practical

observation, the training will not include any records in the first

52 weeks prior to the selected record – because that would require

a training dependent variable which was not available at the time.

For each of the 1040 weeks, the testing samples will be extracted

from records in the historical trailing five years behind the

selected record including all data from the selected week BUT not

ahead in time. The testing dependent variable will be extracted

from the historical data record exactly 52 weeks forward in time

from the selected record.

Each experimental protocol will produce 1040 symbolic

regression runs over an average of 275,000 records for each

training run and between 1200 and 1500 records for each testing

run. Three hours will be allocated for training. Of course 1040 X 2

(training and testing) separate R-Square statistics will be

produced for each experimental protocol. We will examine the R-

Square statistics for evidence favoring the addition of swarm

intelligence over the base line and for evidence favoring one

swarm intelligence technique over another.

Finally we will need to adapt our methodology to conform to the

rigorous United States Securities and Exchange Commission

oversight and regulations on investment managers. The SEC

mandates that every investment firm have a compliance officer.

For any automated forward earnings prediction algorithm, which

would be used as the basis for later stock recommendations to

external clients or internal portfolio managers, the computer

software code used in each prediction, the historical data used in

each prediction, and each historical prediction itself, must be filed

with the compliance officer in such form and manner so as to

allow a surprise SEC compliance audit to reproduce each

individual forward prediction exactly as it was at the original time

of publication to external clients or internal portfolio managers.

Of course this means that we must provide a copy of all code, all

data, and each forward prediction for each stock in each of the

1040 weeks, to our compliance officer. Once management accepts

our symbolic regression system, we will also have to provide a

copy of all forward predictions on an ongoing basis to the

compliance officer.

Furthermore there is an additional challenge in meeting these SEC

compliance details. The normal manner of operating GP, SI, and

symbolic regression systems in academia will not be acceptable in

5

a real world compliance environment. Normally, in academia, we

recognize that symbolic regression is a heuristic search process

and so we perform multiple SR runs, each starting with a different

random number seed. We then report based on a statistical

analysis of results across multiple runs. This approach produces

different results each time the SR system is run. In a real world

compliance environment such practice would subject us to serious

monetary fines and also to jail time.

The SEC compliance requirements are far from arbitrary. Once

management accepts such an SR system, the weekly automated

predictions will influence the flow of millions and even billions of

dollars into one stock or another and the historical back testing

results will be used to sell prospective external clients and internal

portfolio managers on using the system’s predictions going

forward.

First the authorities want to make sure that as time goes forward,

in the event that the predictions begin to perform poorly, we will

not simply rerun the original predictions again and again, with a

different random number seed, until we obtain better historical

performance and then substitute the new better performing

historical performance results in our sales material.

Second the authorities want to make sure that, in the event our

firm should own many shares of the subsequently poorly

performing stock of “ABC” Corp, that we do not simply rerun the

current week’s predictions again and again, with a different

random number seed, until we obtain a higher ranking for “ABC”

stock thus improperly influencing our external clients and internal

portfolio managers to drive the price of “ABC” stock higher.

In order to meet SEC compliance regulations we have altered our

symbolic regression system, used in this chapter across all

experiments, to use a pseudo random number generator with a

pre-specified starting seed. Multiple runs always produce exactly

the same results.

5. GP and Swarm in Symbolic Regression
In standard Koza-style tree-based Genetic Programming [12] the

genome and the individual are the same Lisp s-expression which

is usually illustrated as a tree. Of course the tree-view of an s-

expression is only a visual aid, since a Lisp s-expression is

normally a list which is a special Lisp data structure. Without

altering or restricting standard tree-based GP in any way, we can

view the individuals not as trees but instead as s-expressions.

6 depth 0 binary tree s-exp: 3.45
7 depth 1 binary tree s-exp: (+ x2 3.45)
8 depth 2 binary tree s-exp: (/ (+ x2 3.45) (* x0 x2))
9 depth 2 irregular tree s-exp: (/ (+ x2 3.45) 2.0)

Up until this point we have not altered or restricted standard GP in

any way; but, now we are about to make a slight alteration so that

the standard GP s-expression can be made swarm friendly. Let us

use the following s-expression.

10 (* (/ (- x0 3.45) (+ x0 x2)) (/ (- x5 1.31) (* x0 2.1)))

In this individual (10), the real constants are embedded within the

s-expression and are inconvenient for swarm algorithms. So we

are going to add an annotation to the individual (10). We are

going to add enumerated constant nodes, and we are going to add

a constant chromosome vector creating a new individual (11). The

individual (11) will now have three components: an abstract s-

expression (11), the original s-expression (11.1), and a constant

chromosome (11.2) as follows.

11 (* (/ (- x0 c[0]) (+ x0 x2)) (/ (- x5 c[1]) (* x0 c[2])))
11.1 s-exp: (* (/ (- x0 3.45) (+ x0 x2)) (/ (- x5 1.31) (* x0 2.1)))
11.2 c: <3.45 1.31 2.1>

Individual (11) evaluates to the exact same value as (10). Each

real number constant in (10) has been replaced with an indexed

vector reference of the type c[i], where c is a vector of real

numbers containing the same real numbers originally found in

(10). While this process adds some annotation overhead to (10), it

does expose all of the real number constants in a vector which is

swarm intelligence friendly.

At this point let us take a brief pause. Examine the original s-

expression (10) also (11.1) and compare it to the new annotated

abstract version (11). Walk through the evaluation process for

each version. Satisfy yourself that the concrete s-expression (11.1)

and the abstract annotated (11) both evaluate to exactly the same

interim and final values.

We have made no restrictive or destructive changes in the original

individual (10). Slightly altered to handle the new constant vector

references and the new chromosome annotations, any standard GP

system will behave as it did before. Prove it to yourself this way.

Take the annotated individual (11), and replace each indirect

reference with the proper value from the constant vector. This

converts the abstract annotated (11) back into the concrete s-

expression (11.1). Let your standard GP system operate on (11.1)

any way it wishes to produce a new individual (11^.1). Now

convert (11^.1) back into an abstract annotated version with the

same process we used to annotate (10).

Furthermore, if we have a compiled a machine register optimized

version, γ(x), of (10), we do not even have to perform
expensive recompilation in order to change a value in the
constant chromosome. We need only alter the values in the
constant chromosome and re-evaluate the already compiled
and optimized γ(x).

Armed with these newly annotated individuals, let’s take a fresh

look at how we might improve the standard process of genetic

programming during a symbolic regression run. Consider the

following survivor population in a standard GP island.

12.1 (* (/ (- x0 3.45) (+ x0 x2)) (/ (- x5 1.31) (* x0 2.1)))
12.2 (cos (/ (- x4 2.3) (min x0 x2)))
12.3 (* (/ (- x0 5.15) (+ x0 x2)) (/ (- x5 -2.21) (* x0 9.32)))
12.4 (sin (/ (- x4 2.3) (min x0 x2)))
12.5 (sin (/ (- x4 2.3) (avg x0 x2)))
12.6 (* (/ (- x0 3.23) (+ x0 x2)) (/ (- x5 -6.31) (* x0 7.12)))
12.7 (* (/ (- x0 2.13) (+ x0 x2)) (/ (- x5 3.01) (* x0 2.12)))

First of all, the GP mutation and crossover operators do not have

any special knowledge of real numbers. They have a difficult time

isolating and optimizing numeric constants. But the situation gets

worse.

6

As generation after generation of training has passed, the

surviving individuals in the island population have become

specialized in common and predictable ways. Individuals (12.2),

(12.4), and (12.5) are all close mutations of each other. Evolution

has found a form that is pretty good and is trying to search for a

more optimal version. GP is fairly good at exploring the search

space around these individuals.

However, (12.1), (12.3), (12.6), and (12.7) are all identical forms

with the exception of the values of their embedded numeric

constants. As time passes, the survivor population will become

increasingly dominated by variants of (12.1) and in time its

progeny may crowd out all other survivors. GP has a difficult time

exploring the search space around (12.1) largely because the form

is already optimized – it is the constant values which need

additional optimization.

In swarm friendly AEG enhanced symbolic regression system, the

individuals (12.1), (12.3), (12.6), and (12.7) are all viewed as

constant homeomorphs and they are stored in the survivor pool as

one individual with another annotation: a swarm constant pool as

follows.

13.1 (* (/ (- x0 c[0]) (+ x0 x2)) (/ (- x5 c[1]) (* x0 c[2])))

 13.1.1 (* (/ (- x0 3.45) (+ x0 x2)) (/ (- x5 1.31) (* x0 2.1)))
 13.1.2 c: <3.45 1.31 2.1>
 13.1.3 Swarm Constant Pool

 13.1.3[0] <3.45 1.31 2.1>
 13.1.3[1] <5.15 -2.21 9.32>
 13.1.3[2] <3.23 -6.31 7.12>
 13.1.3[3] <2.13 3.01 2.12>

13.2 (cos (/ (- x4 2.3) (min x0 x2))) {annotations omitted}
13.3 (sin (/ (- x4 2.3) (min x0 x2))) {annotations omitted}
13.4 (sin (/ (- x4 2.3) (avg x0 x2))) {annotations omitted}

The AEG enhanced SR system has combined the individuals

(12.1), (12.3), (12.6), and (12.7) into a single constant

homeomorphic canonical version (13.1) with all of the constants

stored in a swarm constant pool inside the individual. Now the GP

island population does not become dominated inappropriately.

Plus, we are free to apply swarm intelligence algorithms to the

constants inside (13.1) without otherwise hindering the GP

algorithms in any way.

The remainder of this chapter is devoted to comparing the effects

of several hybrid algorithms on symbolic regression accuracy in

predicting forward twelve month corporate earnings. The chosen

algorithms are Standard Koza-style GP, GP with Particle Swarm,

GP with Differential Evolution, and GP with the Bees algorithm.

6. AEG Conversion Algorithm
The Abstract Expression Grammar constant conversion algorithm

is a straight forward search and replace type algorithm in which a

standard Koza-style s-expression is converted into an annotated

AEG individual as shown in Algorithm (1).

Algorithm 1: AEG Conversion

1 Input: in // Koza-style s-expression

2 Output: out // AEG annotated individual

3 Parameters: k, r, n, N

Summary: AEG Conversion removes all of the constants from

an input s-expression and places them in a vector where swarm

intelligence algorithms can easily optimize them. The output is

a constant vector and the original s-expression modified to

refer indirectly into the constant vector instead of referencing

the constants directly.

4 set out = <aexp,sexp,c,pool> // empty AEG individual

5 set out.aexp = in

6 set out.sexp = in

7 set out.c = <..empty vector of reals..>

8 set out.pool = <..empty vector of vectors..>

9 set N = length of out.aexp

10 for n from 0 until N do

11 if out.aexp[n] is a real number constant then

12 set r = out.aexp[n]

13 set k = length of out.c

14 set out.c[k] = r

15 set out.aexp[n] = “c[k]” // replace r with c indexed reference

16 end if

17 set out.pool[0] = out.c

18 return out

7. GP Algorithm
Symbolic Regression with standard GP [8], [9], [10], and [12]

evolves the GLM’s basis functions as Lisp s-expressions.

Evolution is achieved via the population operators of mutation,

and crossover. We use a simple elitist GP algorithm which is

outlined in Algorithm (2). The inputs are a vector of N training

points, X, a vector of N dependent variables, Y, and the number of

generations to train, G. Each point in X is a member of RM =

<x1,x2,…,xm>. The fitness score is the root mean squared error

divided by the standard deviation of Y, NLSE.

Algorithm 2: Standard GP

1 Input: X // N vector of independent M-featured training points

2 Input: Y // N vector of dependent variables

3 Input: G // Number of generations to train

4 Output: champ // Champion s-expression individual

5 Parameters: K, P

Summary: Standard GP searches for a champion s-expression

by randomly growing and scoring a large number of candidate

s-expressions, then iteratively creating and scoring new

candidate s-expressions via mutation and crossover. After each

iteration, the population of candidate s-expressions is

truncated to those with the best score. After the final iteration,

the champion is the s-expression with the best score.

6 function: mutateSExp(me)

Summary: mutateSExp randomly alters an input s-expression

by replacing a randomly selected sub expression with a new

randomly grown sub expression.

7 me = copy(me)

8 set L = number of nodes in me // me is a list of Lisp Pairs

9 set s = generate random s-expression

10 set n = random integer between 0 and L

11 set me[n] = s // Replaces nth node with s

12 return me

13 end fun

14 function: crossoverSExp(mom,dad)

Summary: crossoverSExp randomly alters a mom input s-

expression by replacing a randomly selected sub expression in

mom with a randomly selected sub expression from dad.

15 dad = copy(dad)

7

16 mom = copy(mom)

17 set Ld = number of nodes in dad // dad is a list of Pairs

18 set Lm = number of nodes in mom // mom is a list of Pairs

19 set n = random integer between 0 and Lm

20 set m = random integer between 0 and Ld

21 set mom[n] = dad[m] // Replaces nth node with mth node

22 return mom

23 end fun

24 main logic

25 for k from 0 until K do // Initialize population

26 set w = generate random s-expression

27 set population.last = score(w)

28 end for k

29 sort population by fitness score

30 truncate population to P most fit individuals

31 set champ = population.first

32 for g from 0 until G do // Main evolution loop

33 for p from 0 until P do // Main evolution loop

34 set w = mutateSExp(population[p])

35 set population.last = score(w)

36 set dad = population[p]

37 set i = random integer between p and P

38 set mom = population[i]

39 set w = crossoverSExp(dad,mom)

40 set population.last = score(w)

41 end for p

42 sort population by fitness score

43 truncate population to P most fit individuals

44 set champ = population.first

45 end for g

46 return champ

Adding Abstract Expression Grammars to standard GP Symbolic

Regression [3], [4], [5], and [6] evolves the GLM’s basis

functions as AEG individuals. Our simple modified elitist GP

Algorithm (3) is outlined below. The inputs are a vector of N

training points, X, a vector of N dependent variables, Y, and the

number of generations to train, G. Each point in X is a member of

RM = <x1,x2,…,xm>. The fitness score is the root mean squared

error divided by the standard deviation of Y, NLSE.

Algorithm 3: AEG GP with Swarm

1 Input: X // N vector of independent M-featured training points

2 Input: Y // N vector of dependent variables

3 Input: G // Number of generations to train

4 Output: champ // Champion AEG individual

5 Parameters: K, P, S

Summary: AEG GP with swarm searches for a champion s-

expression as in standard GP (see Algorithm 2). However,

before inserting s-expression candidates into the survivor

population they are converted into AEGs and then merged with

any similar AEGs (s-expressions with matching constant

positions), then iteratively creating and scoring new candidate

s-expressions via mutation, crossover, and swarm. After each

iteration, the population of candidate AEG s-expressions is

truncated to those with the best score. After the final iteration,

the champion is the AEG s-expression with the best score.

6 function: swarm(X,Y,aeg) // aeg = <aexp,sexp,c,pool>

7 …see Algorithm 5, 6, or 7…

8 return aeg

9 end fun

10 function: convertToAEG(sexp)
11 …see Algorithm 1…

12 return aeg

13 function: convertToSExp(aeg) // aeg = <aexp,sexp,c,pool>

14 …see Algorithm 4…

12 return sexp

15 function: insertInPop(aeg) // aeg = <aexp,sexp,c,pool>

Summary: insertInPop accepts an input AEG s-expression

then searches the population of AEG candidate s-expressions

for a constant homeomorphic AEG s-expression (an AEG with

matching form and constant locations … although the value of

the constants may be different). If a constant homeomorphic

AEG is found, the input AEG is merged with the existing

canonical version already in the population; otherwise, the

input AEG is inserted in the population in order of its score.

16 I = length of population

17 for i from 0 until I do // Search population

18 set w = population[i]

19 if (w.aexp = aeg.aexp) then

20 set w.pool = append(w.pool,aeg.pool)

21 sort w.pool by fitness score

22 truncate w.pool to S most fit constant vectors

23 set w.c = w.pool.first

24 set w.sexp = convertToSExp(w)

25 return population

26 end if

27 end for i

28 set population.last = aeg

29 return population

30 function: mutateSExp(me) // me = <aexp,sexp,c,pool>

Summary: mutateSExp randomly alters an input s-expression

by replacing a randomly selected sub expression with a new

randomly grown sub expression.

31 me = copy(me.sexp)

32 set L = number of nodes in me // me is a list of Lisp Pairs

33 set s = generate random s-expression

34 set n = random integer between 0 and L

35 set me[n] = s // Replaces nth node with s

36 set me = convertToAEG(me)

37 return me

38 end fun

39 function: crossoverSExp(dad,mom)

Summary: crossoverSExp randomly alters a mom input s-

expression by replacing a randomly selected sub expression in

mom with a randomly selected sub expression from dad.

40 dad = copy(dad.sexp)

41 mom = copy(mom.sexp)

42 set Ld = number of nodes in dad // dad is a list of Pairs

43 set Lm = number of nodes in mom // mom is a list of Pairs

44 set n = random integer between 0 and Ld

45 set m = random integer between 0 and Lm

46 set dad[n] = mom[m] // Replaces nth node with mth node

47 set dad = convertToAEG(dad)

48 return dad

49 end fun

50 main logic

51 for k from 0 until K do // Initialize population

52 set w = generate random s-expression

53 w = score(convertToAEG(w))

54 set population = insertInPop(w)

55 end for k

8

56 sort population by fitness score

57 truncate population to P most fit individuals

58 set champ = population.first

59 for g from 0 until G do // Main evolution loop

60 for p from 0 until P do // Main evolution loop

61 set w = swarm(population[p])

62 set w = mutateSExp(population[p])

63 set population = insertInPop(score(w))

64 set dad = population[p]

65 set i = random integer between p and P

66 set mom = population[i]

67 set w = crossoverSExp(dad,mom)

68 set population = insertInPop(score(w))

69 end for p

70 sort population by fitness score

71 truncate population to P most fit individuals

72 set champ = population.first

73 end for g

74 return champ

Conversion from an AEG individual back to a standard s-

expression is accomplished as outlined in Algorithm (4).

Algorithm 4: AEG To S-Expression Conversion

1 Input: in // AEG annotated individual <aexp,sexp,c,pool>

2 Output: out // Koza-style s-expression

3 Parameters: k, r, n, N

Summary: AEG To S-Expression Conversion accepts an AEG

annotated individual and returns a Koza-style s-expression

with all of the indirect constant references replaced with the

direct constant values taken from the AEG constant vector.

4 set out = copy(in.aexp)

9 set N = length of out.aexp

10 for n from 0 until N do

11 if out[n] is a constant reference “c[k]” then

12 set r = in.aexp.c[k]

14 set out[n] = r // replace constant reference with constant

16 end if

18 return out

8. AEG Differential Evolution
Abstract Expression Grammar GP can be used with differential

evolution [7] which evolves the GLM’s basis functions as AEG

individuals. The DE algorithm encodes each individual as a

constant vector. Each AEG <aexp,sexp,c,pool> stores the

population of DE individuals in its constant pool and the current

most fit champion as its constant vector c. In Algorithm (3)

swarm evolution is seamlessly merged with standard GP and our

AEG differential evolution algorithm is outlined In Algorithm (5).

The Differential Evolution algorithm is a straightforward attempt

to keep a sorted list of the best constant vectors seen so far. Pairs

of these constant vectors are selected at random along with the

best constant vector seen so far. The algorithm then averages the

differences between these constant vectors, in several obvious

ways, to move closer to a global optimum.

Algorithm 5: AEG Differential Evolution

1 Input: X // N vector of independent M-featured training points

2 Input: Y // N vector of dependent variables

3 Input: in // AEG annotated individual <aexp,sexp,c,pool>
4 Output: in AEG annotated individual <aexp,sexp,c,pool>

5 Parameters: S

Summary: AEG Differential Evolution optimizes a pool of

vectors by selecting the best scoring vector along with a

randomly selected pair of constant vectors, then the distances

between these vectors are averaged in various ways to produce

a new candidate vector to be scored. After scoring, the

population of vectors is truncated to those with the best scores.

6 function: randomNudge(c) // constant vector = <c0,c2,…,cj>

Summary: randomNudge accepts an input constant vector

then produces a new constant vector by adding or subtracting

small random increments from each constant in the input

vector.

7 var (defaultSkew .90) (defaultRange .20)

8 c = copy(c)

9 I = length of c

10 for i from 0 until I do

11 set r = random number from 0 to defaultRange

12 set r = defaultSkew + r

13 set c[i] = r*c[i]

14 end for i

15 end fun

16 function: search(a,b,c)

Summary: search accepts a, b, and c constant vectors in an

input vector pool in. A new output constant vector w is created

by randomly averaging the distances between the three vectors.

The new vector w is used to score the AEG whose constant

pool is being optimized. After scoring, the in pool is truncate to

the constant vectors with the best scores. The score of the AEG

is set to the score of the best constant vector in its pool.

17 var (F .50)

18 w = copy(a)

19 I = length of a

20 for i from 0 until I do

21 set r = random number from 0 to 1.0

22 set r = F + r

23 set w[i] = a[i] + (r*(b[i]-c[i]))

24 end for i

25 set in.pool.last = w

26 set in.c = w

27 score(in)

28 sort in.pool by fitness score

29 truncate in.pool to S most fit constant vectors

30 set in.c = in.pool.first

31 set in.sexp = convertToSExp(in)

32 return in

33 end fun

34 main logic

35 set I length of in.pool

36 if (I=0) then return in end if

37 set best = in.pool[0]

38 set j1 = random integer from 0 until I

39 set j2 = random integer from j1 until I

40 set b1 = in.pool[j1]

41 if (j1=0) then set b1 = randomNudge(best)

42 set b2 = in.pool[j2]

43 if (j2= j1) then set b2 = randomNudge(b2)

44 set r = random number from 0 until 1.0

45 // Modest momentum

46 if (r<.50) then search(best,best,b1)

9

47 // Aggressive momentum

48 else if (r<.80) then search(best,best,b2)

49 // Modest Mediation

50 else if (r<.85) then search(b1,best,b1)

51 // Aggressive mediation

52 else if (r<.90) then search(b2,best,b2)

53 // Wandering up

54 else if (r<.95) then search(b2,b1,b2)

55 // Wandering down

56 else set in.pool = search(b1,b2,b1)

57 return in

9. AEG Bees Algorithm
Abstract Expression Grammar GP can be used with Bees

algorithm [14] and [15] which evolves the GLM’s basis functions

as AEG individuals. Each AEG <aexp,sexp,c,pool> stores the

population of Bees individuals in its constant pool and the current

most fit champion as its constant vector c. In Algorithm (3)

swarm evolution is seamlessly merged with standard GP and our

AEG bees algorithm is outlined in Algorithm (6) below.

Our Bees algorithm has been modified to fit within the larger

framework of an evolving GP environment. Therefore, the

evolutionary loop is in the GP algorithm and has been removed

from the Bees algorithm. Instead the Bees algorithm is repeatedly

called from the main GP loop during evolution. Furthermore, we

must execute the Bees algorithm on all AEG individuals with a

non-empty constant pool; therefore, care must be taken such that

any one AEG individual does not monopolize the search process.

The Bees algorithm gets its inspiration from the cooperative

behavior of bees foraging for food. There is the concept of a

visited food site (which in our case is one of the constant vectors

in the constant pool) and a bee which searches these food sites and

assigns them a fitness value (in our case a bee is the AEG

individual wrapped around and evaluating the constant vector).

Since we have only one bee (the AEG individual), when multiple

bees are required, we will have our single AEG individual search

multiple times.

In the original Bees algorithm, there are S food sites selected for

search (in our case the AEG’s constant pool). Of the S selected

sites, the E fittest sites are “elite” sites and the remaining (S-E)

sites are “non-elite” sites. In the original Bees algorithm there are

B bees. Since we have only one bee (the AEG individual), we will

have our AEG individual search B times. Of the total B bees

available, BEP bees are recruited to search the neighborhood

around each elite food site, and BSP bees are recruited to search

the neighborhood around each non-elite food site. The remaining

BRP bees search at random anywhere they please. This all

assumes that B = BEP+BSP+BRP.

In the original Bees algorithm, for each elite food site there are

BEP neighborhood searches performed, for each non-elite food

site there are BSP neighborhood searches performed, and there are

BRP random searches performed in each iteration of the main

evolutionary loop. Thus the total number of searches devoted to

all elite food sites can be expressed as (E*BEP), while the total

number of searches devoted to all non-elite food sites can be

expressed as ((S-E)*BSP), and the total number of random

searches can be expressed by the fraction BRP. From these counts

of total searches performed, we can derive the probability that an

elite site will be searched, that a non-elite site will be searched,

and that a random search will be performed. These computed

percentages will be the parameters of our modified Bees

algorithm: BEp, BSp, and BRp.

Algorithm 6: AEG Bees Algorithm

1 Input: X // N vector of independent M-featured training points

2 Input: Y // N vector of dependent variables

3 Input: in // AEG annotated individual <aexp,sexp,c,pool>

4 Output: in AEG annotated individual <aexp,sexp,c,pool>

5 Parameters: BEp, BSp, BRp, E, S

Summary: AEG Bees Algorithm optimizes a pool of vectors by

incrementally selecting each vector from the pool of constant

vectors, then either producing a new candidate vector in a

random neighborhood around the selected vector or producing

a new random vector. The new vector is scored. After scoring,

the population of vectors is truncated to those with the best

scores.

6 function: neighborSearch(c) // constant vector = <c0,c2,…,cj>

Summary: neighborSearch accepts an input constant vector

then produces a new constant vector by adding or subtracting

small random increments from each constant in the input

vector. The new vector is scored and inserted into the constant

pool.

7 w = copy(c)

8 d = copy(c)

9 I = length of c

10 J = length of in.Pool

11 // compute local neighborhood radius vector

12 for j from 1 until J do

13 for i from 0 until I do

14 set d[i] += (abs(in.Pool[j-1][i]-in.Pool[j][i])/(J-1))

15 end for i

16 end for j

17 // Search the local neighborhood

18 for i from 0 until I do

19 set r = random number from 0 to (2*d[i])

20 set r = r – d[i]

21 set w[i] = w[i]+r;

22 end for i

23 set in.pool.last = w

24 set in.c = w

25 score(in)

26 sort in.pool by fitness score

27 truncate in.pool to S most fit constant vectors

28 set in.c = in.pool.first

29 set in.sexp = convertToSExp(in)

30 end fun

31 function: randomSearch()

Summary: randomSearch produces a new constant vector by

randomly setting a value to each constant in the new vector.

The new vector is scored and inserted into the constant pool.

32 w = random constant vector

33 set in.pool.last = w

34 set in.c = w

35 score(in)

36 sort in.pool by fitness score

37 truncate in.pool to S most fit constant vectors

38 set in.c = in.pool.first

39 set in.sexp = convertToSExp(in)

10

40 return in

41 end fun

42 main logic

43 vars (Ie starts at 0) (If starts at E)

44 set I length of in.pool

45 if (I=0) then return in end if

46 set ce = if (Ie<E) then in.pool[Ie] else in.pool.first end if

47 set Ie = Ie + 1

48 if (Ie>=E) then set Ie = 0 end if

49 set cf = if (If<I) then in.pool[If] else in.pool.first end if

50 set If = If + 1

51 if (If>=I) then set If = E end if

52 set choice = random integer between 0 and 1.0

53 if (choice<BEp) then neighborSearch(ce) end if

54 if (choice<BSp) then neighborSearch(cf) end if

55 if (choice<BRp) then randomSearch() end if

56 return in

10. AEG Particle Swarm
Abstract Expression Grammar GP can be used with particle

swarm [2] which evolves the GLM’s basis functions as AEG

individuals. In Algorithm (3) swarm evolution is seamlessly

merged with standard GP and our AEG particle swarm algorithm

is outlined in Algorithm (7) below.

Our Particle Swarm (PSO) algorithm has also been modified to fit

within the larger framework of an evolving GP environment.

Therefore, the evolutionary loop is in the GP algorithm and has

been removed from the PSO algorithm. Instead the PSO algorithm

is repeatedly called from the main GP loop during evolution.

Furthermore, we must execute the PSO algorithm on all AEG

individuals with a non-empty constant pool; therefore, care must

be taken such that any one AEG individual does not monopolize

the search process.

The PSO algorithm gets its inspiration from the clustering

behavior of birds or insects as they fly in formation. There is the

concept of an individual swarm member called a particle, the

current position of each particle, the best position ever visited by

each particle, a velocity for each particle, and the best position

every visited by any particle (the global best). In our case, each

particle will be one of the constant vectors in our AEG

individual’s constant pool. A fitness value will be assigned to

each constant by wrapping the AEG individual around the

constant vector and scoring.

Each AEG <aexp,sexp,c,pool> stores the population of PSO

individuals in its constant pool and the current most fit champion

as its constant vector c. However, implementing the PSO

algorithm requires adding a few new items to our AEG individual.

Let aeg be an AEG individual in our system. The best position

ever visited by any particle will be designated as aeg.best (global

best). The best position ever visited by each particle, i, will be

designated as aeg.pool[i]→best (local best). The velocity of each

particle, i, will be designated as aeg.pool[i]→v. The score of a

constant vector, c, will be designated as fitness(c). And, of course,

each particle, i, is nothing more than one of the constant vectors in

the AEG individual’s constant pool aeg.pool[i].

Algorithm 7: AEG Particle Swarm

1 Input: X // N vector of independent M-featured training points

2 Input: Y // N vector of dependent variables

3 Input: in // AEG annotated individual <aexp,sexp,c,pool>

4 Output: in AEG annotated individual <aexp,sexp,c,pool>

5 Parameters: WL, WG, WV, S

Summary: AEG Particle Swarm optimizes a pool of vectors by

randomly selecting a pair of constant vectors from the pool of

constant vectors. A new vector is produced when the pair of

vectors, together with the global best vector, are randomly

nudged closer together based upon their previous approaching

velocities. The new vector is scored. After scoring, the

population of vectors is truncated to those with the best scores.

6 main logic

7 vars (Ic starts at 0)

8 set J = length of in.pool

9 if (J<=0) then return in end if

10 i = Ic

11 c = copy(in.pool[i])

12 v = copy(in.pool[i]→v)

13 if (v = null) then

14 set v = random velocity vector

15 set in.pool[i]→v = v

16 end if

17 lbest = in.pool[i]→best

18 if (lbest = null) then

19 set lbest = c

20 set in.pool[i]→best = lbest

21 end if

22 gbest = in.best

23 if (gbest = null) then

24 set gbest = c

25 set in.best = gbest

26 end if

27 // Compute the velocity weight parameters

28 maxg = maximum generations in the main GP search

29 g = current generation count in the main GP search

30 WL = .25 + ((maxg – g)/maxg) // local weight

31 WG = .75 + ((maxg – g)/maxg) // global weight

32 WV = .50 + ((maxg – g)/maxg) // velocity weight

33 I = length of c

34 set r1 = random number from 0 to 1.0

35 set r2 = random number from 0 to 1.0

36 // Update the particle’s velocity & position

37 for i from 0 until I do

38 set lnudge = (WL*r1*(lbest[i]-c[i]))

39 set gnudge = (WG*r2*(gbest[i]-c[i]))

40 set v[i] = (WV*v[i])+lnudge+gnudge

41 set c[i] = c[i]+v[i]

42 end for i

43 // Score the new particle position

44 set in.c = c

45 score(in)

46 // Update the best particle positions

47 if (fitness(c)>fitness(lbest)) then lbest = c end if

48 if (fitness(c)>fitness(gbest)) then gbest = c end if

49 in.best = gbest

50 set in.pool.last = c

51 set in.pool.last→best = lbest

52 set in.pool.last→v = v

53 // Enforce elitist constant pool

54 sort in.pool by fitness score

11

55 truncate in.pool to S most fit constant vectors

56 set in.c = in.pool.first

57 set in.sexp = convertToSExp(in)

58 // Enforce iterative search of constant pool

59 set Ic = Ic + 1

60 if (Ic>=S) then set Ic = 0 end if

61 return in

11. Sample Test Problems
Several sample test problems have been collected upon which we

can compare the performance of standard GP symbolic regression

and hybrid AEG symbolic regression. Each of these test problems

contains an embedded real constant which greatly affects the

behavior of the formula during regression. If our theory is correct,

these test problems should receive better results with AEG

symbolic regression than with standard GP symbolic regression.

The test problems are as follows.

14.1 y = -2.3 + (0.13*sin(4.1*x2))

14.2 y = 3.0 + (2.13*log(1.3+x4))

14.3 y = 2.0 - (2.1*cos(9.8/x0))

Two symbolic regressions are performed for each test problem:

standard GP symbolic regression, and AEG symbolic regression

(using the Bees Algorithm 6). Clearly the AEG symbolic

regressions perform much better than standard GP symbolic

regression. Table 1 shows the results.

Table 1: Sample Test Problem Regressions

Formula
NLSE

GP

RSQ

GP

NLSE

AEG

RSQ

AEG

14.1 .47 .77 0.0 1.0

14.2 .18 .96 0.0 1.0

14.3 .36 .81 0.0 1.0

Note: NLSE is the least squared error divided by the standard

deviation of Y, and RSQ is the R-Square statistic from the

regression. An NLSE of 0.0 is perfect while an RSQ of 1.0 is

perfect.

Clearly the AEG symbolic regression runs are discovering and

optimizing the embedded constants correctly; however, the

standard GP symbolic regression runs are unable to optimize the

constants and get confused. It is simply too difficult for standard

GP to optimize these difficult embedded constants using only

mutation and crossover. Furthermore, the standard GP runs

produce estimators which are far from the correct form. The

following are the top five estimators, produced by the standard GP

symbolic regression, for test problem (14.1).

14.1.1 y = 4.6+(-2.45*(sqrt(log(x0))));

14.1.2 y = -11919+(-0.86*((-13824+log(x0))));

14.1.3 y = -1891+(-0.8624*((-2197+log(x0))));

14.1.4 y = -2073+(-0.8624*((-2401+log(x0))));

14.1.5 y = -1749+(-0.8624*((-2025+log(x0))));

The results are so absolute that statistical analysis is unnecessary.

Standard GP symbolic regression cannot solve these problems,

while AEG symbolic regression always solves these problems

exactly. Furthermore, it is clear that the standard GP run is trying

to optimize constants but it has gotten stuck in a local minimum

with the wrong formula and its population of champions is

dominated by the attempt to optimize constants rather than trying

to find a better fitting formula.

Incidentally, it made no difference when the Bees Algorithm was

replaced with the Differential Evolution Algorithm or with the

Particle Swarm Algorithm. The results of an AEG symbolic

regression on the sample test problems was a perfect score no

matter which swarm algorithm was chosen.

Furthermore, on the issue of scientific reproducibility, we have

included detailed algorithms in this chapter. No matter what

random seed is used, standard GP SR will not optimize sample

problems 14.1, 14.2, and 14.3 in any practical time. This is

because the population operators available to standard GP SR do

not manage imbedded constants. Plus no matter what random seed

is used, SR with any one of the three popular swarm algorithms

will optimize the sample problems 14.1, 14.2, and 14.3 very

quickly. These results are easily scientifically reproduced.

Now that we have tested AEG symbolic regression on several

sample test problems, achieving much better performance than

standard GP symbolic regression, it is time to compare AEG with

standard GP symbolic regression on a real world investing

problem: estimating forward 12 month earnings per share for a

database of companies between 1990 and 2009. We begin with

some background on investing. In addition, we will also compare

the results of the three different swarm intelligence algorithms.

12. Investing Strategies
Value investing [1] has produced several of the wealthiest

investors in the world including Warren Buffet. Nevertheless,

value investing has a host of competing strategies including

momentum [16] and hedging [17].

One of the most difficult challenges in devising a securities

investing strategy is the a priori identification of pending regime

changes. For instance, momentum investing strategies were very

profitable in the 1990's and not so profitable in the 2000's while

value investing strategies were not so profitable in the 1990's but

turned profitable in the 2000's. Long Short hedging strategies

were profitable in the 1990's and early 2000's but collapsed

dramatically in the late 2007 thru 2008 period. Knowing when to

switch from Momentum to Value, Value to Hedging, and Hedging

back to Value was critical for making consistent above average

profits during the twenty year period from 1990 thru 2009.

The challenge becomes even more difficult when one adds the

numerous technical and fundamental buy/sell triggers to currently

popular active management investing strategies. Bollinger Bands,

MACD, Earning Surprises, etc. all have complex and dramatic

effects on the implementation of securities investing strategies,

and all are vulnerable to regime changes. The question arises, "Is

there a simple securities investing strategy which is less

vulnerable to regime changes than other strategies?".

An idealized value investing hypothesis is put forward: "Given

perfect foresight, buying stocks with the best future earning yield

(Next12MoEPS/CurrentPrice) and holding for 12 months will

produce above average securities investing returns".

12

Using our database of the 1500 Valueline stocks from 1986 thru

2009, we studied three ideal concentrated portfolios: five, twenty

five, and fifty stock portfolios. Each of these idealized

concentrated portfolios are sampled each month for the twenty

years from 1990 thru 2009. Fixed holding periods of one month,

one quarter, and one year were examined. The per annum

compound return for each decade and each holding period are

shown in Table 2 along with the compounded returns, including

dividends, of the Standard & Poor's 500 for each decade.

Table 2: Returns for idealize future earnings yield

Holding

period
Decade

5

stocks

25

Stocks

50

Stocks

month 1990s 76% 69% 63%

month 2000s 120% 69% 53%

quarter 1990s 58% 73% 64%

quarter 2000s 69% 74% 53%

year 1990s 48% 46% 41%

year 2000s 103% 61% 45%

SP500 1990s 18% 18% 18%

SP500 2000s (2%) (2%) (2%)

Note: Per annum compound returns for each decade.

The data supports the conclusion that the ideal hypothesis yields

highly above average investing profits for all portfolio sizes and

all holding periods across both decades. Furthermore the ideal

hypothesis appears less vulnerable to regime changes than many

other popular active securities investment strategies given that the

1990s decade was a raging bull environment while the 2000s

decade was a terrible bear environment.

13. Buying Current Earnings Yield
Of course the ideal hypothesis is impossible to implement because

it requires perfect foresight which is, in the absence of time travel,

unobtainable. Nevertheless the ideal hypothesis represents the

theoretical upper limit on the profits realizable from a strategy of

buying future revenue cheaply; yet, the theoretical profits are so

rich that one cannot help but ask the question, "Are there revenue

prediction models which will allow one to capture some portion of

the profits from the ideal hypothesis?".

The easiest revenue prediction model involves simply using the

current year's trailing 12 month revenue as a proxy for future

revenue.

The data supports the conclusion that even using this current

revenue proxy model buying the top five, twenty five, and fifty

stocks with the highest (current12MoEPS/currentPrice)

produces above average securities investing profits, as least for

the 1500 Valueline stocks, as shown in Table 3.

Table 3: Returns for current revenue prediction

Holding

period
Decade

5

stocks

25

Stocks

50

Stocks

month 1990s 29.0% 16.5% 16.6%

month 2000s 8.2% 11.4% 15.4%

quarter 1990s 41.7% 14.9% 14.9%

quarter 2000s 22.7% 13.5% 15.6%

year 1990s 36.4% 17.6% 15.6%

year 2000s 42.1% 19.7% 17.4%

SP500 1990s 18% 18% 18%

SP500 2000s (2%) (2%) (2%)

Note: Per annum compound returns for each decade.

Clearly using this current revenue prediction model buying the top

five, twenty five, and fifty stocks with the highest

(current12MoEPS/currentPrice), produces above average

securities investing profits, in most cases, especially with one year

holding periods.

Like buying stocks with the best future earning yield

(Next12MoEPS/CurrentPrice), buying current earnings yield

(current12MoEPS/currentPrice) is an ideal method. By ideal we

mean that all information is known and exact. There is no

predictive aspect, no guess work. We already know what current

earnings are for any stock.

Nevertheless, buying a stock with low PE but whose future 12

month earnings will plummet bringing on bankruptcy is an

obviously poor choice. So why is low PE investing so successful

given that future 12 month earnings can vary significantly?

Placing current earnings yield investing in this context puts a new

spin on this standard value investing measure. In this context we

are saying that current earnings yield (also known as low PE

investing) works precisely to the extent that current earnings are

a reasonable predictor of future earnings! In situations where

current earnings are NOT a good predictor of future earnings, then

current earnings yield investing looses it efficacy.

This agrees with our common sense understanding. For instance,

given two stocks with the same high current earnings yield, where

one will go bankrupt next year and the other will double its

earnings next year; we would prefer the stock whose earnings will

double. Implying that, in the ideal, current earnings are just a data

point. We want to buy future earnings cheap!

Precisely because the per annum returns from this current revenue

prediction model are far less than the returns achieved with

perfect prescience, we must now look for more accurate methods

of net revenue prediction.

14. Future Revenue Prediction Inputs
One very simplistic revenue prediction input model involves

simply adding last year's revenue delta to current revenue as a

prediction of future revenue, as follows:

15 2010EPS = (2009EPS-2008EPS)+2009EPS

...to generalize, we have:

15.1 forwardRevenue = (revenue-pastRevenue)+revenue

Another simple revenue prediction input is the broker estimates.

Each week there appears a broker consensus estimate for the next

12Mo EPS for each of the stocks in our database. This broker

revenue prediction can be used as a model for future revenue.

13

If we combine a number of these simple future revenue prediction

inputs together we can construct a set of consensus inputs for

prediction of future revenue. Constructing this consensus revenue

inputs requires the following components.

16 margin = (currentEPS/currentSPS)

17 brokerEPS = broker consensus estimate

18 forwardEPS = (currentEPS-pastEPS)+currentEPS

19 projectEPS = (4*(currentEPS-pastQtrEPS))+currentEPS

20 forwardSPS = (currentSPS-pastSPS)+currentSPS

21 projectSPS = (4*(currentSPS-pastQtrSPS))+currentSPS

22 forwardSEPS = forwardSPS*margin

23 projectSEPS = projectSPS*margin

The five bolded elements above (brokerEPS, forwardEPS,

projectEPS, forwardSEPS, and projectSEPS) are the consensus

inputs to all of our future revenue prediction efforts in the

remainder of this chapter.

15. Future Revenue: GP-only
Each week we can construct a GP-only symbolic regression

estimate (using Algorithm 2) for next 12Mo EPS for each of the

stocks in our database, using the following five inputs as

dependent variables: brokerEPS, forwardEPS, projectEPS,

forwardSEPS, and projectSEPS. Each week we train a symbolic

regression model on approximately 375,000 training examples

(250 weeks of backward historical data times approximately 1,500

stocks), and each week we use the newly trained symbolic

regression model to predict the earnings per share of each stock in

our database for the new week. This is a text book case of in-

sample-training with out-of-sample-testing using a sliding forward

250 week training window.

The per annum returns using this symbolic regression revenue

prediction model buying the top five , twenty five, and fifty stocks

with the highest (regression12MoEPS/currentPrice) produces

above average securities investing profits as shown in Table 4.

Table 4: Returns for GP-only

Holding

period
Decade

5

stocks

25

Stocks

50

Stocks

month 1990s 33.2% 17.9% 18.2%

month 2000s 9.7% 13.2% 17.6%

quarter 1990s 43.9% 16.8% 15.1%

quarter 2000s 25.6% 15.3% 18.5%

year 1990s 39.2% 18.8% 17.8%

year 2000s 45.6% 21.2% 18.9%

SP500 1990s 18% 18% 18%

SP500 2000s (2%) (2%) (2%)

Note: Per annum compound returns for each decade.

Clearly using the GP-only symbolic regression revenue prediction

model buying the top five , twenty five, and fifty stocks with the

highest (regression12MoEPS/currentPrice) produces above

average securities investing profits, in most cases. In fact,

compared with all simple prediction methods shown so far, for

reasonably diversified fifty stock portfolios, the annual hold

returns are the best we have seen so far.

Nevertheless, despite the satisfying accuracy and high returns,

there are issues with the GP symbolic regression model. The main

issue with the GP regression approach is a fundamental issue of

believability. Every mathematical model, however highly

correlated with market behavior over a period, must withstand the

test of believability.

Because the standard GP process is difficult to constrain, many of

the basis functions reach sizes and complexities beyond

reasonable. For instance, in March of 1998 the GP regression

creates an earnings model containing the term:

tanh(forwardEPS/brokerEPS). This strains the credulity of any

fund portfolio manager and is very difficult to explain using

standard financial concepts. It clearly works statistically in that

training period; but, it is not believable.

Worse still, in order to achieve its high accuracy, the GP

regression process drives the coefficients on some of the basis

functions to negative values. This also creates a financial model

which does not make common sense, and is therefore

unbelievable. When the champion estimator, produced by

symbolic regression is ridiculous, it undermines the acceptance of

the whole symbolic regression process vis a vis investing, and no

fund manager will risk assets based upon the SR models.

For instance, for the month of April 2001 the GP regression

method creates an earnings model with a highly weighted basis

function where the coefficient for forwardEPS is negative. …

24 eps = …+(-1.293*forwardEPS2)+…

Since forwardEPS is the result of adding last year’s earnings

growth to this year’s earnings to get an estimate for next year, a

negative coefficient has the SR model telling us that companies

with big earnings growth last year are bad! AND the larger last

year’s earnings growth the worse the model penalizes the

company.

A statistician will immediately suspect over fitting in this SR

champion model. Professional investors are less kind in their

incredulity. Unfortunately standard GP symbolic regression

produces many champions with these believability problems.

Many of the champion estimator models produced by standard GP

symbolic regression simply do not pass the common sense test.

Investing large amounts of risk assets based on these GP models

is very problematic because of the GP model’s fundamental lack

of believability. Even in the unlikely event that management were

to sign off, regulatory and compliance sign off would be

impossible.

16. Basis Function Constraints using AEG
Abstract Expression Grammars (AEGs) can be used to constrain

the basis functions searched in a symbolic regression so that the

believability issues with standard GP are resolved [6] and [13]. In

our case it is reasonable and believable to constrain the basis

functions to either sigmoid or Classification and Regression Tree

(CART) sigmoid.

14

Using our five future revenue predictions as inputs to a nonlinear

sigmoid regression, we can construct a more believable prediction

model. Our first attempt will be to stay with an almost linear

regression, but where the model coefficients are forced into the

sigmoid domain. The model coefficients cannot go negative and

they cannot rise above 1.0. This creates a more believable

regression model in which the coefficients act more like

significance weights attached to each of the five input EPS

predictions as follows.

25 eps = c1*brokerEPS+ c2*forwardEPS+ c3*projectEPS

 + c4*forwardSEPS+ c5*projectSEPS

 where 0 ≤ ci ≤ 1.0 for 1≤ i ≤ 5

In this sigmoid linear regression model each coefficient represents

the significance given to one of the five input predictions.

Therefore if c1=.2 while c2=.4, the model is saying that the higher

the brokerEPS estimate and the higher the forwardEPS estimate

the better; BUT, the model gives twice as much weight to

forwardEPS estimates as it does to brokerEPS estimates. This is a

far more intuitively believable model.

Also it is possible to construct a more sophisticated sigmoid

Classification and Regression Tree (CART) model by using the

sigmoid model (24) as a template for four leaf nodes of a simple

classification tree as follows.

25.1 µ1 = c1*brokerEPS+ c2*forwardEPS+ c3*projectEPS

 + c4*forwardSEPS+ c5*projectSEPS

 where 0 ≤ ci ≤ 1.0 for 1≤ i ≤ 5

25.2 µ2 = c6*brokerEPS+ c7*forwardEPS+ c8*projectEPS

 + c9*forwardSEPS+ c10*projectSEPS

 where 0 ≤ ci ≤ 1.0 for 6≤ i ≤ 10

25.3 µ3 = c11*brokerEPS+ c12*forwardEPS+ c13*projectEPS

 + c14*forwardSEPS+ c15*projectSEPS

 where 0 ≤ ci ≤ 1.0 for 11≤ i ≤ 15

25.4 µ4 = c16*brokerEPS+ c17*forwardEPS+ c18*projectEPS

 + c19*forwardSEPS+ c20*projectSEPS

 where 0 ≤ ci ≤ 1.0 for 16≤ i ≤ 20

We can then place these sigmoid leaf nodes into a simple CART

formula as follows.

25.5 eps = (v1<v2)?((v3<v4)?µ1:µ2):(v5<v6)?µ3:µ4)

where V = {brokerEPS,forwardEPS,projectEPS,

 forwardSEPS,projectSEPS}

 where vi ɛ V for 1≤ i ≤ 4

In this sigmoid CART nonlinear regression model each of the four

leaf nodes is a sigmoid nonlinear model of the type shown in (24).

Each of the decision variables, vi, is one of the five possible

inputs.

By constraining the basis functions searched to be either sigmoid

or CART sigmoid, we automatically eliminate the issues

associated with GP-only future revenue prediction, and we

achieve future earnings models which pass the test all important

test of believability.

Unfortunately, having imposed these important basis function

constraints, we encounter an additional issue. GP-only symbolic

regression is very poor at evolving real number constants. These

constraints place a heavy emphasis on the evolution of real

number constants within the basis function and its sigmoid

coefficients. Therefore we must add, to our hybrid AEG

algorithm, evolutionary techniques which are better able to evolve

real number constants. The remainder of this chapter will compare

the efficacy of three hybrid evolutionary algorithms on the task of

future revenue prediction.

17. GP with Particle Swarm
Testing the algorithm in (6.1) and limiting our basis functions to

either sigmoid or CART sigmoid as in Section 13, each week we

can construct a symbolic regression estimate for next 12Mo EPS

for each of the stocks in our database, using the following five

inputs as dependent variables: brokerEPS, forwardEPS,

projectEPS, forwardSEPS, and projectSEPS.

Each week we train a symbolic regression model on

approximately 375,000 training examples (250 weeks of

backward historical data times approximately 1,500 stocks), and

each week we use the newly trained symbolic regression model to

predict the earnings per share of each stock in our database for the

new week.

The per annum returns using this symbolic regression revenue

prediction model buying the top five , twenty five, and fifty stocks

with the highest (regression12MoEPS/currentPrice) produces

above average securities investing profits as shown in Table 5.

Table 5: Returns for GP with Particle Swarm

Holding

period
Decade

5

stocks

25

Stocks

50

Stocks

month 1990s 21.2% 26.1% 22.2%

month 2000s 7.6% 13.9% 17.8%

quarter 1990s 12.9% 29.2% 25.1%

quarter 2000s 9.2% 14.7% 19.2%

year 1990s 37.7% 26.3% 21.3%

year 2000s 5.6% 22.5% 22.6%

SP500 1990s 18% 18% 18%

SP500 2000s (2%) (2%) (2%)

Note: Per annum compound returns for each decade.

Clearly using the GP with particle swarm symbolic regression

revenue prediction model buying the top five , twenty five, and

fifty stocks with the highest (regression12MoEPS/currentPrice)

produces above average securities investing profits, in most cases.

In fact, compared with GP-only prediction methods, adding

particle swarm has increased accuracy significantly – while

adding believability.

15

18. GP with Differential Evolution
Testing the algorithm in (6) and limiting our basis functions to

either sigmoid or CART sigmoid as in Section 13, each week we

can construct a symbolic regression estimate for next 12Mo EPS

for each of the stocks in our database, using the following five

inputs as dependent variables: brokerEPS, forwardEPS,

projectEPS, forwardSEPS, and projectSEPS.

Each week we train a symbolic regression model on

approximately 375,000 training examples (250 weeks of

backward historical data times approximately 1,500 stocks), and

each week we use the newly trained symbolic regression model to

predict the earnings per share of each stock in our database for the

new week.

The per annum returns using this symbolic regression revenue

prediction model buying the top five , twenty five, and fifty stocks

with the highest (regression12MoEPS/currentPrice) produces

above average securities investing profits as shown in Table 6.

Table 6: Returns for GP with Differential Evolution

Holding

period
Decade

5

stocks

25

Stocks

50

Stocks

month 1990s 20.6% 26.8% 22.6%

month 2000s 7.4% 14.8% 18.6%

quarter 1990s 13.6% 29.0% 24.3%

quarter 2000s 9.6% 14.2% 18.8%

year 1990s 37.9% 27.4% 23.8%

year 2000s 5.3% 21.3% 21.5%

SP500 1990s 18% 18% 18%

SP500 2000s (2%) (2%) (2%)

Note: Per annum compound returns for each decade.

Clearly using the GP with differential evolution symbolic

regression revenue prediction model buying the top five , twenty

five, and fifty stocks with the highest

(regression12MoEPS/currentPrice) produces above average

securities investing profits, in most cases. However the GP with

differential evolution algorithm does not yield a significant

improvement over GP with particle swarm.

19. GP with Bees Algorithm
Testing the algorithm in (7) and limiting our basis functions to

either sigmoid or CART sigmoid as in Section 13, each week we

can construct a symbolic regression estimate for next 12Mo EPS

for each of the stocks in our database, using the following five

inputs as dependent variables: brokerEPS, forwardEPS,

projectEPS, forwardSEPS, and projectSEPS.

Each week we train a symbolic regression model on

approximately 375,000 training examples (250 weeks of

backward historical data times approximately 1,500 stocks), and

each week we use the newly trained symbolic regression model to

predict the earnings per share of each stock in our database for the

new week.

The per annum returns using this symbolic regression revenue

prediction model buying the top five , twenty five, and fifty stocks

with the highest (regression12MoEPS/currentPrice) produces

above average securities investing profits as shown in Table 7.

Table 7: Returns for GP with Bees Algorithm

Holding

period
Decade

5

stocks

25

Stocks

50

Stocks

month 1990s 107.6% 66.7% 43.7%

month 2000s 9.8% 16.9% 19.3%

quarter 1990s 51.3% 37.9% 31.5%

quarter 2000s 10.5% 18.3% 19.4%

year 1990s 26.8% 30.0% 22.2%

year 2000s 15.4% 28.9% 24.0%

SP500 1990s 18% 18% 18%

SP500 2000s (2%) (2%) (2%)

Note: Per annum compound returns for each decade.

Clearly using the GP with Bees Algorithm symbolic regression

revenue prediction model buying the top five , twenty five, and

fifty stocks with the highest (regression12MoEPS/currentPrice)

produces above average securities investing profits, in most cases.

In fact, compared with all other prediction methods (referring to

fifty stock portfolios, which have less statistical variance than

smaller portfolios) adding the Bees algorithm has increased

accuracy significantly over GP-only and is a slight improvement

over GP with particle swarm and GP with differential evolution.

However, the Bees slight performance improvement over DE and

PSO is not statistically significant under rigorous statistical

analysis.

20. Summary
Having no population operators of its own which specialize in

constant optimization, it is our contention that standard GP

symbolic regression can benefit greatly when enhanced with

swarm intelligence algorithms specializing in constant

optimization. A method of integrating standard GP with swarm

intelligence, Abstract Expression Grammars is introduced.

The importance of constants in symbolic regression is studied. It

is shown that the size of the search space, for even simple

financial applications, is very large and that a significant portion

of that size is due to the presence of constants.

Several sample test problems, with embedded constants, are

presented with standard GP symbolic regression unable to solve

any of the problems while AEG enhanced SR is always able to

solve each of the problems exactly. It made no difference which

swarm algorithm was used – DE, Bees, or PSO. It was the

presence of AEG integrated swarm intelligence which made the

test problems tractable.

Theoretical, methodological, and regulatory issues applying

standard GP symbolic regression to an important investment

finance application are discussed. Symbolic regression is

enhanced, using AEG, to be applicable to the prediction of

forward 12 month earnings per share. A number of bloat and

16

believability issues applying SR to predicting forward 12 month

earnings are addressed and solved with AEG.

AEG enhanced symbolic regression is used to predict forward 12

month earnings per share on approximately 1500 stocks from

1990 to 2009. Three distinct swarm intelligence algorithms are

compared: DE, Bees, and PSO. All three swarm algorithms

perform well, providing earnings predictions in a format easily

acceptable by portfolio managers and regulatory compliance

officers.

Incidentally, comparing t-statistics, f-statistics, variance,

information ratio and p-values shows it made no difference when

the Bees Algorithm was replaced with the Differential Evolution

Algorithm or with the Particle Swarm Algorithm. The results of

an AEG symbolic regression on predicting future 12Mo eps was

statistically similar for all swarm algorithms compared. It was the

integration with any of the three swarm algorithms which made

symbolic regression effective for forward earning prediction.

Enhancing standard GP with Abstract Expression Grammar

hybrid algorithms solves a number of regression accuracy,

believability, and regulatory issues when using symbolic

regression in financial applications. Based upon our experiments

in this chapter, standard GP symbolic regression has serious issues

when applied to financial applications; while, swarm enhanced SR

shows real promise in the financial domain.

Furthermore using AEG to add swarm intelligence algorithms to

SR significantly enhanced accuracy in future 12 month revenue

prediction and produced above average securities investing profits

in the historical period 1990 to 2009. Significantly this superior

performance was undeterred by the bearish market environment of

the 200 decade.

Directions for future research include investigating whether or not

there are other swarm algorithms which would show real

statistical significantly improved results over DE, Bees, and PSO?

Is AEG the optimal GP SI integration approach to symbolic

regression, or is there another integration approach which is

superior?

17

References

[1] Graham, Benjamin, and David Dodd. 2008. Securities

Analysis. New York, New York, USA. McGraw-Hill.

[2] Kennedy, J.; Eberhart, R. 1995. Particle Swarm

Optimization. Proceedings of IEEE International Conference

on Neural Networks. IV. pp. 1942–1948.

[3] Korns, Michael F. 2007. Large-Scale, Time-Constrained

Symbolic Regression-Classification. In Riolo, Rick, L,

Soule, Terrance, and Wortzel, Bill, editors, Genetic

Programming Theory and Practice V, New York, New York,

USA. Springer, pp. 299–314.

[4] Korns, Michael F., and Nunez, Loryfel, 2008. Profiling

Symbolic Regression-Classification. In Riolo, Rick, L,

Soule, Terrance, and Wortzel, Bill, editors, Genetic

Programming Theory and Practice VI, New York, New

York, USA. Springer, pp. 215–228.

[5] Korns, Michael F., 2009. Symbolic Regression of

Conditional Target Expressions. In Riolo, Rick, L, Soule,

Terrance, and Wortzel, Bill, editors, Genetic Programming

Theory and Practice VII, New York, New York, USA.

Springer, pp. 211–228.

[6] Korns, Michael F., 2010. Abstract Expression Grammar

Symbolic Regression. In Riolo, Rick, L, Soule, Terrance, and

Wortzel, Bill, editors, Genetic Programming Theory and

Practice VIII, New York, New York, USA. Springer,

pp. 109–128.

[7] Price, Kenneth, Storn, Rainer, Lampinen, Jouni 2009.

Differential Evolution: A Practical Approach to Global

Optimization. New York, New York, USA. Springer.

[8] Guido Smits, Ekaterina Vladislavleva, and Mark Kotanchek

2010, Scalable Symbolic Regression by Continuous

Evolution with Very Small Populations, in Riolo, Rick, L,

Soule, Terrance, and Wortzel, Bill, editors, Genetic

Programming Theory and Practice VIII, New York, New

York, USA. Springer, pp. 147–160.

[9] Flor Castillo, Arthur Kordon, and Carlos Villa 2010, Genetic

Programming Transforms in Linear Regression Situations, in

Riolo, Rick, L, Soule, Terrance, and Wortzel, Bill, editors,

Genetic Programming Theory and Practice VIII, New York,

New York, USA. Springer, pp. 175–194.

[10] Trent McConaghy, Pieter Palmers, Gao Peng, Michiel

Steyaert, Goerges Gielen 2009, Variation-Aware Analog

Structural Synthesis: A Computational Intelligence

Approach. New York, New York, USA. Springer.

[11] J.A., Nelder, and R. W. Wedderburn, 1972, Journal of the

Royal Statistical Society, Series A, General, 135:370-384.

[12] John R Koza 1992, Genetic Programming: On the

Programming of Computers by Means of Natural Selection.

Cambridge Massachusetts, The MIT Press.

[13] Korns, Michael F., 2011. Accuracy in Symbolic Regression.

In Riolo, Rick, L, Soule, Terrance, and Wortzel, Bill, editors,

Genetic Programming Theory and Practice IX, New York,

New York, USA. Springer (to be published in winter 2011).

[14] Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S.,

and Zaidi, M. 2005. “The Bees Algorithm”. Technical Report

Cardiff University.

[15] Parpinelli, R. S., and Lopes, H. S., 2011. New inspirations in

swarm intelligence: a survey. Int Journal of Bio-inspired

Computation. Vol 3. Number 1.

[16] Bernstein, J., 2001. Momentum Stock Selection: Using The

Momentum Method for Maximum Profits. New York, New

York, McGraw Hill

[17] Nicholas, J., 2000. Market-Neutral Investing: Long/Short

Hedge Fund Strategies. New York, New York, Bloomberg

Press.

[18] Poli, Riccardo, McPhee, Nicholas, Vanneshi, Leonardo,

2009. Analysis of the Effects of Elitism on Bloat in Linear

and Tree-based Genetic Programming. In Riolo, Rick, L,

Soule, Terrance, and Wortzel, Bill, editors, Genetic

Programming Theory and Practice VI, New York, New

York, USA. Springer, pp. 91–110.

