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ABSTRACT 

 
Valuation of securities via their forward 12 month price earnings 

ratio (ftmPE) is a very common securities valuation method in the 

industry. Obviously the ftmPE valuation depends heavily on the 

estimate of forward 12 month corporate earnings per share 

(ftmEPS). Obvious inputs to the ftmEPS prediction process are the 

past earnings time series plus one or more analyst predictions. 

Previously only linear regression and linear classification and 

regression trees (CART) have been available as techniques for 

analyzing these inputs. Nonlinear symbolic regression (SR) has 

not been used because of SR’s difficulties optimizing imbedded 

constants. However, recent integrations of swarm intelligence (SI) 

with symbolic regression support a level of maturity and 

sophistication making nonlinear regression and nonlinear CART 

available for real world financial applications. 

 

Automated ftmEPS prediction involving the analysis of many 

securities, often involves multiple training regressions each on 

hundreds of thousands of training examples, plus there is always a 

timeliness issue, so analytic tools must be strong and thoroughly 

matured. Symbolic regression systems incorporating only genetic 

programming are shown to be inadequate for optimizing 

imbedded constants; but, symbolic regression systems integrating 

swarm intelligence with genetic programming are shown to be 

quite effective. 

 

This paper examines several different well known swarm 

intelligence algorithms as integrated components in an enhanced 

symbolic regression system. Each swarm algorithm is integrated 

into the symbolic regression system, to predict the forward 12 

month earnings of approximately 1,500 companies over a twenty 

year period (1990 thru 2009). Utilizing both classification and 

regression scores in the training and testing periods, each swarm 

algorithm is analyzed for efficacy. Finally, all of the swarm 

algorithms are allowed to compete simultaneously, in multiple 

islands, to predict ftmEPS. Again utilizing both classification and 

regression scores in the training and testing periods, this 

competitive approach is compared with the best individual swarm 

algorithm. The goal is to aid in the development of a robust, 

mature, symbolic regression system. 

Keywords 

Value investing, symbolic regression, swarm intelligence, genetic 

programming, nonlinear regression, CART, particle swarm, 

differential evolution, bees algorithm.  

1. Introduction 
The discipline of Symbolic Regression (SR) has matured 

significantly in the last few years. There is at least one 

commercial package on the market for several years 

(http://www.rmltech.com/). There is now at least one well 

documented commercial symbolic regression package available 

for Mathematica (www.evolved-analytics.com). There is at least 

one very well done open source symbolic regression package 

available for free down load (http://ccsl.mae.cornell.edu/eureqa). 

In addition to our own ARC system [6], currently used internally 

for massive financial data nonlinear regressions, there are a 

number of other mature symbolic regression packages currently 

used in industry including [8] and [9]. Plus there is an interesting 

work in progress by McConaghy [10]. 

 

Nonlinear symbolic regression (SR) has not been widely applied 

to financial problems because of SR’s difficulties optimizing 

imbedded constants. Optimizing imbedded constants is often a 

critical requirement in many financial applications. However, 

recent integrations of swarm intelligence (SI) with symbolic 

regression support a level of maturity and sophistication making 

nonlinear regression and nonlinear CART available for real world 

financial applications. 

In this chapter we investigate the integration of two popular 

swarm intelligence algorithms (Bees, and Particle Swarm), and 

one popular evolutionary computation algorithm (Differential 

Evolution) with standard genetic programming symbolic 

regression to help optimize imbedded constants in a real world 

financial application: the prediction of forward 12 month earnings 

per share. We make the observations: that standard genetic 

programming does not optimize imbedded constants well; that 

swarm intelligence algorithms are adept at optimizing constants; 

and that allowing imbedded constants in SR greatly increases the 

size of the search space.  

In the body of the chapter it is shown that the differences between 

the three popular constant managing algorithms is minimal for 

optimizing imbedded constants; yet without any swarm 

intelligence standard GP symbolic regression fails to optimize 

imbedded constants effectively. 

We proceed with a general introduction to symbolic regression 

and the size of the search space. 

Symbolic Regression is an approach to general nonlinear 

regression which is the subject of many scholarly articles in the 

Genetic Programming community. A broad generalization of 

general nonlinear regression is embodied as the class of 

Generalized Linear Models (GLMs) as described in [11]. A GLM 

is a linear combination of I basis functions Bi; i = 1,2, … I, a 
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dependent variable y, and an independent data point with M 

features x = <x1, x2, x3, …xm>: such that 

1 y = γ(x) = c0 + ∑     (x)
 
    + err 

 
As a broad generalization, GLMs can represent any 

possible nonlinear formula. However the format of the 

GLM makes it amenable to existing linear regression 

theory and tools since the GLM model is linear on each of 

the basis functions Bi. 

For a given vector of dependent variables, Y, and a vector 

of independent data points, X, symbolic regression will 

search for a set of basis functions and coefficients which 

minimize err. In [12] the basis functions selected by 
symbolic regression will be formulas as in the following 
examples: 

2 B1 = x3 
3 B2 = x1+x4 
4 B3 = sqrt(x2)/tan(x5/4.56) 
5 B4 = tanh(cos(x2*.2)*cube(x5+abs(x1))) 
 
If we are minimizing the least squared error, LSE, once a suitable 
set of basis functions {B} have been selected, we can discover 
the proper set of coefficients {C} deterministically using 
standard univariate or multivariate regression. The value of 
the GLM model is that one can use standard regression 
techniques and theory. Viewing the problem in this fashion, 
we gain an important insight. Symbolic regression does not 
add anything to the standard techniques of regression. The 
value added by symbolic regression lies in its abilities as a 
search technique: how quickly and how accurately can SR find 
an optimal set of basis functions {B}. 

The immense size of the search space provides ample need for 

improved search techniques In standard Koza-style tree-based 

Genetic Programming [12] the genome and the individual are the 

same Lisp s-expression which is usually illustrated as a tree. Of 

course the tree-view of an s-expression is a visual aid, since a Lisp 

s-expression is normally a list which is a special Lisp data 

structure. Without altering or restricting standard tree-based GP in 

any way, we can view the individuals not as trees but instead as s-

expressions such as this depth 2 binary tree s-exp: (/ (+ x2 3.45) (* 

x0 x2)), or this depth 2 irregular tree s-exp: (/ (+ x2 3.45) 2.0). 

 

In standard GP, applied to symbolic regression, the non-terminal 

nodes are all operators (implemented as Lisp function calls), and 

the terminal nodes are always either real number constants or 

features. The maximum depth of a GP individual is limited by the 

available computational resources; but, it is standard practice to 

limit the maximum depth of a GP individual to some manageable 

limit at the start of a symbolic regression run. 

 

Given any selected maximum depth k, it is an easy process to 

construct a maximal binary tree s-expression Uk, which can be 

produced by the GP system without violating the selected 

maximum depth limit. As long as we are reminded that each f 

represents a function node while each t represents a terminal node, 

the construction algorithm is simple and recursive as follows. 

U0: t 

U1: (f t t) 

U2: (f (f t t) (f t t)) 

U3: (f (f (f t t) (f t t)) (f (f t t) (f t t))) 

Uk: (f Uk-1 Uk-1) 

Any basis function produced by the standard GP system will be 

represented by at least one element of Uk. In fact, Uk is 

isomorphic to the set of all possible basis functions generated by 

the standard GP system. 

 

Given this formalism of the search space, it is easy to compute the 

size of the search space, and it is easy to see that the search space 

is huge even for rather simple basis functions. For our use in this 

chapter the function set will be the following functions: F = {+ - * 

/ abs sqrt square cube cos sin tan tanh log exp max min ℵ} 

(where ℵ(a,b) =  ℵ(a) = a). The terminal set is the features x0 

thru xm and the real constant c, which we shall consider to be 264 

in size. Where |F| = 17, M=20, and k=0 , the search space is S0 = 

M+264 = 20+264 = 1.84x1019. Where k=1, the search space is S1 = 

|F|*S0*S0 = 5.78x1039. Where k=2, the search space grows to S2 = 

|F|*S1*S1 = 5.68x1080. For k=3, the search space grows to S3 = 

|F|*S2*S2 = 5.5x10162. Finally if we allow three basis functions 

B=3 for financial applications, then the final size of the search 

space is S3*S3*S3 = 5.5x10486. 

 

Clearly even for three simple basis functions, with only 20 

features and very limited depth, the size of the search space is 

already very large; and, the presence of real constants accounts for 

a significant portion of that size. For instance, without real 

constants, S0 = 20, S3 = 1.054x1019, and with B=3 the final size of 

the search space is 1.054x1057. It is our contention that since real 

constants account for such a significant portion of the search 

space, symbolic regression would benefit from special constant 

evolutionary operations. Since standard GP does not offer such 

operations, we investigate the enhancement of symbolic 

regression with swarm intelligence algorithms specifically 

designed to evolve real constants. 

 

As we apply our enhanced symbolic regression to an important 

real world investment finance application, the prediction of 

forward 12 month earnings per share, we discover a number of 

accuracy, believability, and regulatory issues which must be 

addressed. Solutions for those issues are provided and we proceed 

to apply an enhanced symbolic regression algorithm to the 

problem of estimating forward corporate earnings per share. 

 

This chapter begins with a discussion of Symbolic Regression 
theory in Section (2) and with important theoretical issues in 
Section (3). Methodology is discussed in Section (4), then 
Sections (5) through (10) discuss the algorithms for Standard 
GP Symbolic Regression and the enhancements for merging 
swarm intelligence with standard GP symbolic regression. In 
Section (11) we compare the performance of standard GP 
symbolic regression with enhanced symbolic regression on a 
set of illustrative sample test problems. Sections (12) thru 
(15) give a background in investing and discuss the essential 
requirements for applying symbolic regression to predicting 
forward 12 month earnings in a real world financial setting. 
Finally, Sections (17) thru (19) compare the performance of 
enhanced symbolic regression with the swarm algorithm 
being Differential Evolution, the bees Algorithm, or Particle 
Swarm. 



 

3 

 

2. Symbolic Regression Theory 
In standard Koza-style symbolic regression [12], a Lisp s-

expression is manipulated via the evolutionary techniques of 

mutation and crossover to produce a new s-expression which can 

be tested, as a basis function candidate in a GLM. Basis function 

candidates that produce better fitting GLMs are promoted. 

Mutation inserts a random s-expression in a random location in 

the starting s-expression. For example, mutating s-expression (4) 

we obtain s-expression (4.1) wherein the sub expression “tan” has 

been randomly replaced with the sub expression “cube”. 

Similarly, mutating s-expression (5) we obtain s-expression (5.1) 

wherein the sub expression “cos(x2*.2)” has been randomly 

replaced with the sub expression “abs(x2+ x5)”. 

 

4 B3 = sqrt(x2)/tan(x5/4.56) 
4.1 B5 = cos(x2)/cube(x5/4.56) 
5 B4 = tanh(cos(x2*.2)*cube(x5+abs(x1))) 
5.1 B6 = tanh(abs(x2+ x5)*cube(x5+abs(x1))) 
 

Crossover combines portions of a mother s-expression and a 

father s-expression to produce a child s-expression. Crossover 

inserts a randomly selected sub expression from the father into a 

randomly selected location in the mother. For example, crossing 

s-expression (5) with s-expression (4) we obtain child s-

expression (5.2) wherein the sub expression “cos(x2*.2)” has 

been randomly replaced with the sub expression “tan(x5/4.56)”. 

Similarly, again crossing s-expression (5) with s-expression (4) 

we obtain another child s-expression (5.3) wherein the sub 

expression “x5+abs(x1)” has been randomly replaced with the 

sub expression “sqrt(x2)”. 

 

4 B3 = sqrt(x2)/tan(x5/4.56) 
5 B4 = tanh(cos(x2*.2)*cube(x5+abs(x1))) 
5.2 B7 = tanh(tan(x5/4.56)*cube(x5+abs(x1))) 
5.3 B8 = tanh(cos(x2*.2)*cube(sqrt(x2))) 
 

These mutation and crossover operations are the main tools of 

standard GP, which functions as described in Algorithm 2, 

randomly creating a population of candidate basis functions, 

mutating and crossing over those basis functions repeatedly while 

consistently promoting the most fit basis functions. The winners 

being the collection of basis functions which receive the most 

favorable least square error in a GLM with standard regression 

techniques. 

3. Theoretical Issue 
A theoretical issue with standard GP symbolic regression is the 

poor optimization of embedded constants under the mutation and 

crossover operators. Notice that in basis functions (4) and (5) 

there are real constants embedded inside the formulas. These 

embedded constants, 4.56 and .2, are quite important. That is to 

say that basis function (4) behaves quite differently than basis 

function (4.2) while basis function (5) behaves quite differently 

than basis function (5.4).   

 

4 B3 = sqrt(x2)/tan(x5/4.56) 
4.2 B9 = sqrt(x2)/tan(x5) 
5 B4 = tanh(cos(x2*.2)*cube(x5+abs(x1))) 
5.4 B10 = tanh(cos(x2)*cube(x5+abs(x1))) 

 

The behavior can be quite startling. For instance, if we generate a 

set of random independent variables for <x1, x2, x3, …xm> and we 

set the dependent variable, y = sqrt(x2)/tan(x5/4.56), then a 
regression on y = sqrt(x2)/tan(x5) returns a very bad LSE. In 

fact the bad regression fit continues until one regresses on y = 

sqrt(x2)/tan(x5/4.5). It is only until one regresses on y = 

sqrt(x2)/tan(x5/4.55) that we get a reasonable LSE with an R-
Square of .56. Regressing on y = sqrt(x2)/tan(x5/4.555) 
achieves a better LSE with an R-Square of .74. Of course 
regressing on y = sqrt(x2)/tan(x5/4.56) returns a perfect LSE 
with an R-Square of 1.0.  

Clearly, in many cases of embedded constants, there is a very 
small neighborhood, around the correct embedded constant, 
within which an acceptable LSE can be achieved.  

In standard Koza-style symbolic regression [12], the mutation and 

crossover operators are quite cumbersome in optimizing 

constants. As standard GP offers no constant manipulation 

operators per se, the mutation and crossover operators must work 

doubly hard to optimize constants. For instance, the only way to 

optimize the embedded constant in s-expression (5) would be to 

have a series of mutations or crossovers which resulted in an s-

expression with multiple iterative additions and subtractions as 

follows [12]. 

4 B3 = sqrt(x2)/tan(x5/4.56) 
4.2 B3 = sqrt(x2)/tan(x5/(1.0+3.2)) 
4.3 B3 = sqrt(x2)/tan(x5/((1.0+3.2)+.3)) 
4.4 B3 = sqrt(x2)/tan(x5/(((1.0+3.2)+.3)+.07)) 
4.4 B3 = sqrt(x2)/tan(x5/((((1.0+3.2)+.3)+.07)-.01)) 
 

Characteristically, the repeated mutation and crossover operations 

which finally realize an optimized embedded constant also greatly 

bloat the resulting basis function with byzantine operator 

sequences [18]. On the other hand swarm intelligence techniques 

are quite good at optimizing vectors of real numbers. So the 

challenge is how to collect the embedded constants found in a GP 

s-expression into a vector so they can be easily optimized by 

swarm intelligence techniques. 

Recent advances in symbolic regression technology including 

Abstract Expression Grammars (AEGs) [3], [4], [5], [6], and [13] 

can be used to control bloat, specify complex search constraints, 

and expose the embedded constants in a basis function so they are 

available for manipulation by various swarm intelligence 

techniques suitable for the manipulation of real numeric values. 

This presents an opportunity to combine standard genetic 

programming techniques together with swarm intelligence 

techniques into a seamless, unified algorithm for pursuing 

symbolic regression. 

The focus of this chapter will be an investigation of swarm 

intelligence techniques, used in connection with AEGs, which can 

improve the speed and accuracy of symbolic regression search, 

especially in cases where embedded numeric constants are an 

issue hindering performance. 

4. Methodology 
Our methodology is influenced by the practical issues in applying 

symbolic regression to a real world investment finance problem. 

First there is the issue that current standard GP symbolic 
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regression cannot solve selected simple test problems required for 

the successful application of SR to predicting forward corporate 

earnings per share. This includes the methodological challenge of 

enhancing standard GP with swarm intelligence and modifying 

the necessary encodings to accommodate both GP and swarm 

intelligence algorithms. Second there is the issue of adapting 

symbolic regression to run in a real world financial application 

with massive amounts of data. Third there is the issue of 

modifying symbolic regression, as practiced in academia, to 

conform to the very difficult U.S. Securities Exchange 

Commission regulatory environment. 

Sections (5) thru (10) discuss the methodological challenge of 

enhancing standard GP symbolic regression so that it can be 

effective when applied to the real world problem of predicting 

forward 12 month corporate earnings per share. In Section (11), 

the behavior of GP symbolic regression with and without the 

enhancement of swarm intelligence is compared on a few sample 

test problems. 

For the sample test problems, we will use only statistical best 

practices out-of-sample testing methodology. A matrix of 

independent variables will be filled with random numbers. Then 

the model will be applied to produce the dependent variable. 

These steps will create the training data. A symbolic regression 

will be run on the training data to produce a champion estimator. 

Next a matrix of independent variables will be filled with random 

numbers. Then the model will be applied to produce the 

dependent variable. These steps will create the testing data. The 

estimator will be regressed against the testing data producing the 

final LSE and R-Square scores for comparison. 

Sections (17) thru (19) compare the behavior of GP symbolic 

regression with and without swarm intelligence on a real world 

problem namely the forward estimation of corporate earnings on a 

database of stocks from 1990 thru 2009. 

For the forward estimation of corporate earnings, this paper uses 

an historical database of approximately 1200 to 1500 stocks with 

daily price and volume data, weekly analyst estimates, and 

quarterly financial data from Jan 1986 to the present. The data has 

been assembled from reports published at the time, so the 

database is highly representative of what information was 

realistically available at the point when trading decisions were 

actually made.  

From all of this historical data, twenty years (1990 thru 2009) 

have been used to support the results shown in this research. This 

two decade period includes a historically significant bull market 

decade followed by an equally historically significant bear market 

decade. 

Multiple vendor sources have been used in assembling the data so 

that single vendor bias can be eliminated. The construction of this 

point in time database has focused on collecting weekly 

consolidated data tables, collected every Friday from Jan 3, 1986 

to the present, representing detailed point in time input to this 

study and cover approximately 1200 to 1500 stocks on a weekly 

basis. Each stock record contains daily price and volume data, 

weekly analyst estimates and rankings, plus quarterly financial 

data as reported. The primary focus is on gross and net revenues. 

The efficacy of several different swarm intelligence techniques 

are examined by running a full experimental protocol for each 

technique. Standard genetic programming, without swarm 

intelligence techniques, will be the base line for this study. We are 

interested in determining if the addition of swarm intelligence 

techniques improves symbolic regression performance – and if so, 

which swarm techniques perform best. 

Our historical database contains 1040 weeks of data between 

January 1990 and December 2009. In a full training and testing 

protocol there is a separate symbolic regression run for each of 

these 1040 weeks. Each SR run consists of predicting the ftmEPS 

for each of the 1200 to 1500 stocks available in that week. A 

sliding training/testing window will be constructed to follow a 

strict statistical out-of-sample testing protocol. 

For each of the 1040 weeks, the training examples will be 

extracted from records in the historical trailing five years behind 

the selected record BUT not including any data from the selected 

week or ahead in time. The training dependent variable will be 

extracted from the historical data record exactly 52 weeks forward 

in time from the selected record BUT not including any data from 

the selected week or ahead in time. Thus, as a practical 

observation, the training will not include any records in the first 

52 weeks prior to the selected record – because that would require 

a training dependent variable which was not available at the time. 

For each of the 1040 weeks, the testing samples will be extracted 

from records in the historical trailing five years behind the 

selected record including all data from the selected week BUT not 

ahead in time. The testing dependent variable will be extracted 

from the historical data record exactly 52 weeks forward in time 

from the selected record.  

Each experimental protocol will produce 1040 symbolic 

regression runs over an average of 275,000 records for each 

training run and between 1200 and 1500 records for each testing 

run. Three hours will be allocated for training. Of course 1040 X 2 

(training and testing) separate R-Square statistics will be 

produced for each experimental protocol. We will examine the R-

Square statistics for evidence favoring the addition of swarm 

intelligence over the base line and for evidence favoring one 

swarm intelligence technique over another.  

Finally we will need to adapt our methodology to conform to the 

rigorous United States Securities and Exchange Commission 

oversight and regulations on investment managers. The SEC 

mandates that every investment firm have a compliance officer. 

For any automated forward earnings prediction algorithm, which 

would be used as the basis for later stock recommendations to 

external clients or internal portfolio managers, the computer 

software code used in each prediction, the historical data used in 

each prediction, and each historical prediction itself, must be filed 

with the compliance officer in such form and manner so as to 

allow a surprise SEC compliance audit to reproduce each 

individual forward prediction exactly as it was at the original time 

of publication to external clients or internal portfolio managers. 

Of course this means that we must provide a copy of all code, all 

data, and each forward prediction for each stock in each of the 

1040 weeks, to our compliance officer. Once management accepts 

our symbolic regression system, we will also have to provide a 

copy of all forward predictions on an ongoing basis to the 

compliance officer. 

Furthermore there is an additional challenge in meeting these SEC 

compliance details. The normal manner of operating GP, SI, and 

symbolic regression systems in academia will not be acceptable in 
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a real world compliance environment. Normally, in academia, we 

recognize that symbolic regression is a heuristic search process 

and so we perform multiple SR runs, each starting with a different 

random number seed. We then report based on a statistical 

analysis of results across multiple runs. This approach produces 

different results each time the SR system is run. In a real world 

compliance environment such practice would subject us to serious 

monetary fines and also to jail time. 

The SEC compliance requirements are far from arbitrary. Once 

management accepts such an SR system, the weekly automated 

predictions will influence the flow of millions and even billions of 

dollars into one stock or another and the historical back testing 

results will be used to sell prospective external clients and internal 

portfolio managers on using the system’s predictions going 

forward.  

First the authorities want to make sure that as time goes forward, 

in the event that the predictions begin to perform poorly, we will 

not simply rerun the original predictions again and again, with a 

different random number seed, until we obtain better historical 

performance and then substitute the new better performing 

historical performance results in our sales material.  

Second the authorities want to make sure that, in the event our 

firm should own many shares of the subsequently poorly 

performing stock of “ABC” Corp, that we do not simply rerun the 

current week’s predictions again and again, with a different 

random number seed, until we obtain a higher ranking for “ABC” 

stock thus improperly influencing our external clients and internal 

portfolio managers to drive the price of “ABC” stock higher. 

In order to meet SEC compliance regulations we have altered our 

symbolic regression system, used in this chapter across all 

experiments, to use a pseudo random number generator with a 

pre-specified starting seed. Multiple runs always produce exactly 

the same results.  

5. GP and Swarm in Symbolic Regression 
In standard Koza-style tree-based Genetic Programming [12] the 

genome and the individual are the same Lisp s-expression which 

is usually illustrated as a tree. Of course the tree-view of an s-

expression is only a visual aid, since a Lisp s-expression is 

normally a list which is a special Lisp data structure. Without 

altering or restricting standard tree-based GP in any way, we can 

view the individuals not as trees but instead as s-expressions. 

 

6 depth 0 binary tree s-exp: 3.45 
7 depth 1 binary tree s-exp: (+ x2 3.45) 
8 depth 2 binary tree s-exp: (/ (+ x2 3.45) (* x0 x2)) 
9 depth 2 irregular tree s-exp: (/ (+ x2 3.45) 2.0) 
 
Up until this point we have not altered or restricted standard GP in 

any way; but, now we are about to make a slight alteration so that 

the standard GP s-expression can be made swarm friendly. Let us 

use the following s-expression. 

 

10 (* (/ (- x0 3.45) (+ x0 x2)) (/ (- x5 1.31) (* x0 2.1))) 
 

In this individual (10), the real constants are embedded within the 

s-expression and are inconvenient for swarm algorithms. So we 

are going to add an annotation to the individual (10). We are 

going to add enumerated constant nodes, and we are going to add 

a constant chromosome vector creating a new individual (11). The 

individual (11) will now have three components: an abstract s-

expression (11), the original s-expression (11.1), and a constant 

chromosome (11.2) as follows. 

 

11 (* (/ (- x0 c[0]) (+ x0 x2)) (/ (- x5 c[1]) (* x0 c[2]))) 
11.1 s-exp: (* (/ (- x0 3.45) (+ x0 x2)) (/ (- x5 1.31) (* x0 2.1))) 
11.2 c: <3.45  1.31  2.1> 
 

Individual (11) evaluates to the exact same value as (10). Each 

real number constant in (10) has been replaced with an indexed 

vector reference of the type c[i], where c is a vector of real 

numbers containing the same real numbers originally found in 

(10). While this process adds some annotation overhead to (10), it 

does expose all of the real number constants in a vector which is 

swarm intelligence friendly. 

 

At this point let us take a brief pause. Examine the original s-

expression (10) also (11.1) and compare it to the new annotated 

abstract version (11). Walk through the evaluation process for 

each version. Satisfy yourself that the concrete s-expression (11.1) 

and the abstract annotated (11) both evaluate to exactly the same 

interim and final values. 

 

We have made no restrictive or destructive changes in the original 

individual (10). Slightly altered to handle the new constant vector 

references and the new chromosome annotations, any standard GP 

system will behave as it did before. Prove it to yourself this way. 

Take the annotated individual (11), and replace each indirect 

reference with the proper value from the constant vector. This 

converts the abstract annotated (11) back into the concrete s-

expression (11.1). Let your standard GP system operate on (11.1) 

any way it wishes to produce a new individual (11^.1). Now 

convert (11^.1) back into an abstract annotated version with the 

same process we used to annotate (10). 

 

Furthermore, if we have a compiled a machine register optimized 

version, γ(x), of (10), we do not even have to perform 
expensive recompilation in order to change a value in the 
constant chromosome. We need only alter the values in the 
constant chromosome and re-evaluate the already compiled 
and optimized γ(x).  
 

Armed with these newly annotated individuals, let’s take a fresh 

look at how we might improve the standard process of genetic 

programming during a symbolic regression run. Consider the 

following survivor population in a standard GP island.   

 

 

12.1 (* (/ (- x0 3.45) (+ x0 x2)) (/ (- x5 1.31) (* x0 2.1))) 
12.2 (cos (/ (- x4 2.3) (min x0 x2))) 
12.3 (* (/ (- x0 5.15) (+ x0 x2)) (/ (- x5 -2.21) (* x0 9.32))) 
12.4 (sin (/ (- x4 2.3) (min x0 x2))) 
12.5 (sin (/ (- x4 2.3) (avg x0 x2))) 
12.6 (* (/ (- x0 3.23) (+ x0 x2)) (/ (- x5 -6.31) (* x0 7.12))) 
12.7 (* (/ (- x0 2.13) (+ x0 x2)) (/ (- x5 3.01) (* x0 2.12))) 

 
First of all, the GP mutation and crossover operators do not have 

any special knowledge of real numbers. They have a difficult time 

isolating and optimizing numeric constants. But the situation gets 

worse.  
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As generation after generation of training has passed, the 

surviving individuals in the island population have become 

specialized in common and predictable ways. Individuals (12.2), 

(12.4), and (12.5) are all close mutations of each other. Evolution 

has found a form that is pretty good and is trying to search for a 

more optimal version. GP is fairly good at exploring the search 

space around these individuals.  

 

However, (12.1), (12.3), (12.6), and (12.7) are all identical forms 

with the exception of the values of their embedded numeric 

constants. As time passes, the survivor population will become 

increasingly dominated by variants of (12.1) and in time its 

progeny may crowd out all other survivors. GP has a difficult time 

exploring the search space around (12.1) largely because the form 

is already optimized – it is the constant values which need 

additional optimization. 

 

In swarm friendly AEG enhanced symbolic regression system, the 

individuals (12.1), (12.3), (12.6), and (12.7) are all viewed as 

constant homeomorphs and they are stored in the survivor pool as 

one individual with another annotation: a swarm constant pool as 

follows.  

 

13.1 (* (/ (- x0 c[0]) (+ x0 x2)) (/ (- x5 c[1]) (* x0 c[2]))) 

   13.1.1 (* (/ (- x0 3.45) (+ x0 x2)) (/ (- x5 1.31) (* x0 2.1))) 
   13.1.2 c: <3.45  1.31  2.1> 
   13.1.3 Swarm Constant Pool 

   13.1.3[0] <3.45  1.31  2.1> 
   13.1.3[1] <5.15  -2.21  9.32> 
   13.1.3[2] <3.23  -6.31  7.12> 
   13.1.3[3] <2.13  3.01  2.12> 

13.2 (cos (/ (- x4 2.3) (min x0 x2))) {annotations omitted} 
13.3 (sin (/ (- x4 2.3) (min x0 x2))) {annotations omitted} 
13.4 (sin (/ (- x4 2.3) (avg x0 x2))) {annotations omitted} 
 
The AEG enhanced SR system has combined the individuals 

(12.1), (12.3), (12.6), and (12.7) into a single constant 

homeomorphic canonical version (13.1) with all of the constants 

stored in a swarm constant pool inside the individual. Now the GP 

island population does not become dominated inappropriately. 

Plus, we are free to apply swarm intelligence algorithms to the 

constants inside (13.1) without otherwise hindering the GP 

algorithms in any way.  

 

The remainder of this chapter is devoted to comparing the effects 

of several hybrid algorithms on symbolic regression accuracy in 

predicting forward twelve month corporate earnings. The chosen 

algorithms are Standard Koza-style GP, GP with Particle Swarm, 

GP with Differential Evolution, and GP with the Bees algorithm. 

6. AEG Conversion Algorithm 
The Abstract Expression Grammar constant conversion algorithm 

is a straight forward search and replace type algorithm in which a 

standard Koza-style s-expression is converted into an annotated 

AEG individual as shown in Algorithm (1). 

 

Algorithm 1: AEG Conversion 

1   Input: in // Koza-style s-expression 

2   Output: out // AEG annotated individual 

3   Parameters: k, r, n, N 

Summary: AEG Conversion removes all of the constants from                              

an input s-expression and places them in a vector where swarm 

intelligence algorithms can easily optimize them. The output is 

a constant vector and the original s-expression modified to 

refer indirectly into the constant vector instead of referencing 

the constants directly. 

4   set out = <aexp,sexp,c,pool>  // empty AEG individual 

5   set out.aexp = in 

6   set out.sexp = in 

7   set out.c = <..empty vector of reals..> 

8   set out.pool = <..empty vector of vectors..> 

9   set N  = length of out.aexp 

10 for n from 0 until N do 

11   if  out.aexp[n] is a real number constant then 

12      set r = out.aexp[n] 

13      set k = length of out.c 

14      set out.c[k] = r 

15      set out.aexp[n] = “c[k]” // replace r with c indexed reference 

16   end if 

17 set out.pool[0] = out.c 

18 return out 

 

7. GP Algorithm 
Symbolic Regression with standard GP [8], [9], [10], and [12] 

evolves the GLM’s basis functions as Lisp s-expressions. 

Evolution is achieved via the population operators of mutation, 

and crossover. We use a simple elitist GP algorithm which is 

outlined in Algorithm (2). The inputs are a vector of N training 

points, X, a vector of N dependent variables, Y, and the number of 

generations to train, G. Each point in X is a member of RM = 

<x1,x2,…,xm>. The fitness score is the root mean squared error 

divided by the standard deviation of Y, NLSE.  

 

Algorithm 2: Standard GP 

1   Input: X // N vector of independent M-featured training points 

2   Input: Y // N vector of dependent variables 

3   Input: G // Number of generations to train 

4   Output: champ // Champion s-expression individual 

5   Parameters: K, P 

Summary: Standard GP searches for a champion s-expression 

by randomly growing and scoring a large number of candidate 

s-expressions, then iteratively creating and scoring new 

candidate s-expressions via mutation and crossover. After each 

iteration, the population of candidate s-expressions is 

truncated to those with the best score. After the final iteration, 

the champion is the s-expression with the best score. 

6   function: mutateSExp(me) 

Summary: mutateSExp randomly alters an input s-expression 

by replacing a randomly selected sub expression with a new 

randomly grown sub expression. 

7     me = copy(me) 

8     set L = number of nodes in me // me is a list of Lisp Pairs 

9     set s = generate random s-expression 

10   set n = random integer between 0 and L 

11   set me[n] = s  // Replaces nth node with s 

12   return me 

13 end fun 

14 function: crossoverSExp(mom,dad) 

Summary: crossoverSExp randomly alters a mom input s-

expression by replacing a randomly selected sub expression in 

mom with a randomly selected sub expression from dad. 

15   dad = copy(dad) 
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16   mom = copy(mom) 

17   set Ld = number of nodes in dad // dad is a list of Pairs 

18   set Lm = number of nodes in mom // mom is a list of Pairs 

19   set n = random integer between 0 and Lm 

20   set m = random integer between 0 and Ld 

21   set mom[n] = dad[m]  // Replaces nth node with mth node 

22   return mom 

23 end fun 

24 main logic 

25 for k from 0 until K do // Initialize population 

26   set w = generate random s-expression 

27   set population.last = score(w) 

28 end for k 

29 sort population by fitness score 

30 truncate population to P most fit individuals 

31 set champ = population.first 

32 for g from 0 until G do // Main evolution loop 

33   for p from 0 until P do // Main evolution loop 

34     set w = mutateSExp(population[p]) 

35     set population.last = score(w) 

36     set dad = population[p] 

37     set i = random integer between p and P 

38     set mom = population[i] 

39     set w = crossoverSExp(dad,mom) 

40     set population.last = score(w) 

41   end for p 

42   sort population by fitness score 

43   truncate population to P most fit individuals 

44   set champ = population.first 

45  end for g 

46 return champ 

 

Adding Abstract Expression Grammars to standard GP Symbolic 

Regression [3], [4], [5], and [6] evolves the GLM’s basis 

functions as AEG individuals. Our simple modified elitist GP 

Algorithm (3) is outlined below. The inputs are a vector of N 

training points, X, a vector of N dependent variables, Y, and the 

number of generations to train, G. Each point in X is a member of 

RM = <x1,x2,…,xm>. The fitness score is the root mean squared 

error divided by the standard deviation of Y, NLSE.  

 

Algorithm 3: AEG GP with Swarm 

1   Input: X // N vector of independent M-featured training points 

2   Input: Y // N vector of dependent variables 

3   Input: G // Number of generations to train 

4   Output: champ // Champion AEG individual 

5   Parameters: K, P, S 

Summary: AEG GP with swarm searches for a champion s-

expression as in standard GP (see Algorithm 2). However, 

before inserting s-expression candidates into the survivor 

population they are converted into AEGs and then merged with 

any similar AEGs (s-expressions with matching constant 

positions), then iteratively creating and scoring new candidate 

s-expressions via mutation, crossover, and swarm. After each 

iteration, the population of candidate AEG s-expressions is 

truncated to those with the best score. After the final iteration, 

the champion is the AEG s-expression with the best score. 

6   function: swarm(X,Y,aeg) // aeg = <aexp,sexp,c,pool> 

7     …see Algorithm 5, 6, or 7… 

8     return aeg 

9   end fun 

10 function: convertToAEG(sexp) 
11   …see Algorithm 1… 

12   return aeg 

13 function: convertToSExp(aeg) // aeg = <aexp,sexp,c,pool> 

14   …see Algorithm 4… 

12   return sexp 

15 function: insertInPop(aeg) // aeg = <aexp,sexp,c,pool> 

Summary: insertInPop accepts an input AEG s-expression 

then searches the population of AEG candidate s-expressions 

for a constant homeomorphic AEG s-expression (an AEG with 

matching form and constant locations … although the value of 

the constants may be different). If a constant homeomorphic 

AEG is found, the input AEG is merged with the existing 

canonical version already in the population; otherwise, the 

input AEG is inserted in the population in order of its score.  

16   I = length of population 

17   for i from 0 until I do // Search population 

18     set w = population[i] 

19     if (w.aexp = aeg.aexp) then  

20       set w.pool = append(w.pool,aeg.pool) 

21       sort w.pool by fitness score 

22       truncate w.pool to S most fit constant vectors 

23       set w.c = w.pool.first 

24       set w.sexp = convertToSExp(w) 

25       return population 

26     end if 

27   end for i 

28   set population.last = aeg 

29   return population 

30 function: mutateSExp(me) // me = <aexp,sexp,c,pool> 

Summary: mutateSExp randomly alters an input s-expression 

by replacing a randomly selected sub expression with a new 

randomly grown sub expression. 

31   me = copy(me.sexp) 

32   set L = number of nodes in me // me is a list of Lisp Pairs 

33   set s = generate random s-expression 

34   set n = random integer between 0 and L 

35   set me[n] = s  // Replaces nth node with s 

36   set me = convertToAEG(me) 

37   return me 

38 end fun 

39 function: crossoverSExp(dad,mom) 

Summary: crossoverSExp randomly alters a mom input s-

expression by replacing a randomly selected sub expression in 

mom with a randomly selected sub expression from dad. 

40   dad = copy(dad.sexp) 

41   mom = copy(mom.sexp) 

42   set Ld = number of nodes in dad // dad is a list of Pairs 

43   set Lm = number of nodes in mom // mom is a list of Pairs 

44   set n = random integer between 0 and Ld 

45   set m = random integer between 0 and Lm 

46   set dad[n] = mom[m]  // Replaces nth node with mth node 

47   set dad = convertToAEG(dad) 

48   return dad 

49 end fun 

50 main logic 

51 for k from 0 until K do // Initialize population 

52   set w = generate random s-expression 

53   w = score(convertToAEG(w)) 

54   set population = insertInPop(w) 

55 end for k 
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56 sort population by fitness score 

57 truncate population to P most fit individuals 

58 set champ = population.first 

59 for g from 0 until G do // Main evolution loop 

60   for p from 0 until P do // Main evolution loop 

61     set w = swarm(population[p]) 

62     set w = mutateSExp(population[p]) 

63     set population = insertInPop(score(w)) 

64     set dad = population[p] 

65     set i = random integer between p and P 

66    set mom = population[i] 

67     set w = crossoverSExp(dad,mom) 

68     set population = insertInPop(score(w)) 

69   end for p 

70   sort population by fitness score 

71   truncate population to P most fit individuals 

72   set champ = population.first 

73  end for g 

74 return champ 

 

Conversion from an AEG individual back to a standard s-

expression is accomplished as outlined in Algorithm (4).  

 

Algorithm 4: AEG To S-Expression Conversion 

1   Input: in // AEG annotated individual <aexp,sexp,c,pool> 

2   Output: out // Koza-style s-expression 

3   Parameters: k, r, n, N 

Summary: AEG To S-Expression Conversion accepts an AEG 

annotated individual and returns a Koza-style s-expression 

with all of the indirect constant references replaced with the 

direct constant values taken from the AEG constant vector. 

4   set out = copy(in.aexp) 

9   set N  = length of out.aexp 

10 for n from 0 until N do 

11   if  out[n] is a constant reference “c[k]” then 

12      set r = in.aexp.c[k] 

14      set out[n] = r  // replace constant reference with constant 

16   end if 

18 return out 

 

8. AEG Differential Evolution 
Abstract Expression Grammar GP can be used with differential 

evolution [7] which evolves the GLM’s basis functions as AEG 

individuals. The DE algorithm encodes each individual as a 

constant vector. Each AEG <aexp,sexp,c,pool> stores the 

population of DE individuals in its constant pool and the current 

most fit champion as its constant vector c.  In Algorithm (3) 

swarm evolution is seamlessly merged with standard GP and our 

AEG differential evolution algorithm is outlined In Algorithm (5). 

 

The Differential Evolution algorithm is a straightforward attempt 

to keep a sorted list of the best constant vectors seen so far. Pairs 

of these constant vectors are selected at random along with the 

best constant vector seen so far. The algorithm then averages the 

differences between these constant vectors, in several obvious 

ways, to move closer to a global optimum.  

 

Algorithm 5: AEG Differential Evolution 

1   Input: X // N vector of independent M-featured training points 

2   Input: Y // N vector of dependent variables 

3   Input: in // AEG annotated individual <aexp,sexp,c,pool> 
4   Output: in AEG annotated individual <aexp,sexp,c,pool> 

5   Parameters: S 

Summary: AEG Differential Evolution optimizes a pool of 

vectors by selecting the best scoring vector along with a 

randomly selected pair of constant vectors, then the distances 

between these vectors are averaged in various ways to produce 

a new candidate vector to be scored. After scoring, the 

population of vectors is truncated to those with the best scores.  

6   function: randomNudge(c) // constant vector = <c0,c2,…,cj> 

Summary: randomNudge accepts an input constant vector 

then produces a new constant vector by adding or subtracting 

small random increments from each constant in the input 

vector.  

7   var (defaultSkew .90) (defaultRange .20) 

8   c = copy(c) 

9   I = length of c 

10 for i from 0 until I do 

11   set r = random number from 0 to defaultRange 

12   set r = defaultSkew + r 

13   set c[i] = r*c[i] 

14 end for i 

15 end fun 

16 function: search(a,b,c) 

Summary: search accepts a, b, and c constant vectors in an 

input vector pool in. A new output constant vector w is created 

by randomly averaging the distances between the three vectors. 

The new vector w is used to score the AEG whose constant 

pool is being optimized. After scoring, the in pool is truncate to 

the constant vectors with the best scores. The score of the AEG 

is set to the score of the best constant vector in its pool. 

17  var (F .50) 

18  w = copy(a) 

19  I = length of a 

20  for i from 0 until I do 

21    set r = random number from 0 to 1.0 

22    set r = F + r 

23    set w[i] = a[i] + (r*(b[i]-c[i])) 

24  end for i 

25  set in.pool.last = w 

26  set in.c = w 

27  score(in) 

28  sort in.pool by fitness score 

29  truncate in.pool to S most fit constant vectors 

30  set in.c = in.pool.first 

31  set in.sexp = convertToSExp(in) 

32  return in 

33 end fun 

34 main logic 

35 set I length of in.pool 

36 if (I=0) then return in end if  

37 set best = in.pool[0] 

38 set j1 = random integer from 0 until I 

39 set j2 = random integer from j1 until I 

40 set b1 = in.pool[j1] 

41 if (j1=0) then set b1 = randomNudge(best) 

42 set b2 = in.pool[j2] 

43 if (j2= j1) then set b2 = randomNudge(b2) 

44 set r = random number from 0 until 1.0 

45 // Modest momentum 

46 if (r<.50) then search(best,best,b1)  
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47 // Aggressive momentum 

48 else if (r<.80) then search(best,best,b2) 

49 // Modest Mediation 

50 else if (r<.85) then search(b1,best,b1) 

51 // Aggressive mediation 

52 else if (r<.90) then search(b2,best,b2) 

53 // Wandering up 

54 else if (r<.95) then search(b2,b1,b2) 

55 // Wandering down 

56 else set in.pool = search(b1,b2,b1) 

57 return in 

 

9. AEG Bees Algorithm 
Abstract Expression Grammar GP can be used with Bees 

algorithm [14] and [15] which evolves the GLM’s basis functions 

as AEG individuals. Each AEG <aexp,sexp,c,pool> stores the 

population of Bees individuals in its constant pool and the current 

most fit champion as its constant vector c.  In Algorithm (3) 

swarm evolution is seamlessly merged with standard GP and our 

AEG bees algorithm is outlined in Algorithm (6) below.  

 

Our Bees algorithm has been modified to fit within the larger 

framework of an evolving GP environment. Therefore, the 

evolutionary loop is in the GP algorithm and has been removed 

from the Bees algorithm. Instead the Bees algorithm is repeatedly 

called from the main GP loop during evolution. Furthermore, we 

must execute the Bees algorithm on all AEG individuals with a 

non-empty constant pool; therefore, care must be taken such that 

any one AEG individual does not monopolize the search process. 

 

The Bees algorithm gets its inspiration from the cooperative 

behavior of bees foraging for food. There is the concept of a 

visited food site (which in our case is one of the constant vectors 

in the constant pool) and a bee which searches these food sites and 

assigns them a fitness value (in our case a bee is the AEG 

individual wrapped around and evaluating the constant vector). 

Since we have only one bee (the AEG individual), when multiple 

bees are required, we will have our single AEG individual search 

multiple times.  

 

In the original Bees algorithm, there are S food sites selected for 

search (in our case the AEG’s constant pool). Of the S selected 

sites, the E fittest sites are “elite” sites and the remaining (S-E) 

sites are “non-elite” sites. In the original Bees algorithm there are 

B bees. Since we have only one bee (the AEG individual), we will 

have our AEG individual search B times. Of the total B bees 

available, BEP bees are recruited to search the neighborhood 

around each elite food site, and BSP bees are recruited to search 

the neighborhood around each non-elite food site. The remaining 

BRP bees search at random anywhere they please. This all 

assumes that B = BEP+BSP+BRP.  

 

In the original Bees algorithm, for each elite food site there are 

BEP neighborhood searches performed, for each non-elite food 

site there are BSP neighborhood searches performed, and there are 

BRP random searches performed in each iteration of the main 

evolutionary loop. Thus the total number of searches devoted to 

all elite food sites can be expressed as (E*BEP), while the total 

number of searches devoted to all non-elite food sites can be 

expressed as ((S-E)*BSP), and the total number of random 

searches can be expressed by the fraction BRP. From these counts 

of total searches performed, we can derive the probability that an 

elite site will be searched, that a non-elite site will be searched, 

and that a random search will be performed. These computed 

percentages will be the parameters of our modified Bees 

algorithm: BEp, BSp, and BRp. 

  

Algorithm 6: AEG Bees Algorithm 

1   Input: X // N vector of independent M-featured training points 

2   Input: Y // N vector of dependent variables 

3   Input: in // AEG annotated individual <aexp,sexp,c,pool> 

4   Output: in AEG annotated individual <aexp,sexp,c,pool> 

5   Parameters: BEp, BSp, BRp, E, S 

Summary: AEG Bees Algorithm optimizes a pool of vectors by 

incrementally selecting each vector from the pool of constant 

vectors, then either producing a new candidate vector in a 

random neighborhood around the selected vector or producing 

a new random vector. The new vector is scored. After scoring, 

the population of vectors is truncated to those with the best 

scores.  

6   function: neighborSearch(c) // constant vector = <c0,c2,…,cj> 

Summary: neighborSearch accepts an input constant vector 

then produces a new constant vector by adding or subtracting 

small random increments from each constant in the input 

vector. The new vector is scored and inserted into the constant 

pool. 

7   w = copy(c) 

8   d = copy(c) 

9   I = length of c 

10 J = length of in.Pool 

11 // compute local neighborhood radius vector 

12 for j from 1 until J do 

13    for i from 0 until I do 

14     set d[i] += (abs(in.Pool[j-1][i]-in.Pool[j][i])/(J-1)) 

15   end for i 

16  end for j 

17  // Search the local neighborhood 

18 for i from 0 until I do 

19   set r = random number from 0 to (2*d[i]) 

20   set r = r – d[i] 

21   set w[i] = w[i]+r; 

22 end for i 

23  set in.pool.last = w 

24  set in.c = w 

25  score(in) 

26  sort in.pool by fitness score 

27  truncate in.pool to S most fit constant vectors 

28  set in.c = in.pool.first 

29  set in.sexp = convertToSExp(in) 

30 end fun 

31 function: randomSearch() 

Summary: randomSearch produces a new constant vector by 

randomly setting a value to each constant in the new vector. 

The new vector is scored and inserted into the constant pool. 

32  w = random constant vector 

33  set in.pool.last = w 

34  set in.c = w 

35  score(in) 

36  sort in.pool by fitness score 

37  truncate in.pool to S most fit constant vectors 

38  set in.c = in.pool.first 

39  set in.sexp = convertToSExp(in) 
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40  return in 

41 end fun 

42 main logic 

43 vars (Ie starts at 0) (If starts at E) 

44 set I length of in.pool 

45 if (I=0) then return in end if 

46 set ce = if (Ie<E) then in.pool[Ie] else in.pool.first end if 

47 set Ie = Ie + 1 

48 if (Ie>=E) then set Ie = 0 end if 

49 set cf = if (If<I) then in.pool[If] else in.pool.first end if 

50 set If = If + 1 

51 if (If>=I) then set If = E end if 

52 set choice = random integer between 0 and 1.0 

53 if (choice<BEp) then neighborSearch(ce) end if  

54 if (choice<BSp) then neighborSearch(cf) end if  

55 if (choice<BRp) then randomSearch() end if  

56 return in 

 

10. AEG Particle Swarm 
Abstract Expression Grammar GP can be used with particle 

swarm [2] which evolves the GLM’s basis functions as AEG 

individuals. In Algorithm (3) swarm evolution is seamlessly 

merged with standard GP and our AEG particle swarm algorithm 

is outlined in Algorithm (7) below. 

 

Our Particle Swarm (PSO) algorithm has also been modified to fit 

within the larger framework of an evolving GP environment. 

Therefore, the evolutionary loop is in the GP algorithm and has 

been removed from the PSO algorithm. Instead the PSO algorithm 

is repeatedly called from the main GP loop during evolution. 

Furthermore, we must execute the PSO algorithm on all AEG 

individuals with a non-empty constant pool; therefore, care must 

be taken such that any one AEG individual does not monopolize 

the search process. 

 

The PSO algorithm gets its inspiration from the clustering 

behavior of birds or insects as they fly in formation. There is the 

concept of an individual swarm member called a particle, the 

current position of each particle, the best position ever visited by 

each particle, a velocity for each particle, and the best position 

every visited by any particle (the global best). In our case, each 

particle will be one of the constant vectors in our AEG 

individual’s constant pool. A fitness value will be assigned to 

each constant by wrapping the AEG individual around the 

constant vector and scoring.  

 

Each AEG <aexp,sexp,c,pool> stores the population of PSO 

individuals in its constant pool and the current most fit champion 

as its constant vector c.  However, implementing the PSO 

algorithm requires adding a few new items to our AEG individual. 

Let aeg be an AEG individual in our system. The best position 

ever visited by any particle will be designated as aeg.best (global 

best). The best position ever visited by each particle, i, will be 

designated as  aeg.pool[i]→best (local best). The velocity of each 

particle, i, will be designated as  aeg.pool[i]→v. The score of a 

constant vector, c, will be designated as fitness(c). And, of course, 

each particle, i, is nothing more than one of the constant vectors in 

the AEG individual’s constant pool aeg.pool[i]. 

 

 

Algorithm 7: AEG Particle Swarm 

1   Input: X // N vector of independent M-featured training points 

2   Input: Y // N vector of dependent variables 

3   Input: in // AEG annotated individual <aexp,sexp,c,pool> 

4   Output: in AEG annotated individual <aexp,sexp,c,pool> 

5   Parameters: WL, WG, WV, S 

Summary: AEG Particle Swarm optimizes a pool of vectors by 

randomly selecting a pair of constant vectors from the pool of 

constant vectors. A new vector is produced when the pair of 

vectors, together with the global best vector, are randomly 

nudged closer together based upon their previous approaching 

velocities. The new vector is scored. After scoring, the 

population of vectors is truncated to those with the best scores.  

6   main logic 

7   vars (Ic starts at 0) 

8   set J = length of in.pool 

9   if (J<=0) then return in end if 

10 i = Ic 

11 c = copy(in.pool[i]) 

12 v = copy(in.pool[i]→v) 

13 if (v = null) then  

14  set v = random velocity vector  

15  set in.pool[i]→v = v  

16 end if  

17 lbest = in.pool[i]→best 

18 if (lbest = null) then  

19  set lbest = c  

20  set in.pool[i]→best = lbest 

21 end if  

22 gbest = in.best 

23 if (gbest = null) then  

24  set gbest = c  

25  set in.best = gbest  

26 end if  

27 // Compute the velocity weight parameters 

28 maxg = maximum generations in the main GP search 

29 g = current generation count in the main GP search 

30 WL = .25 + ((maxg – g)/maxg) // local weight 

31 WG = .75 + ((maxg – g)/maxg) // global weight 

32 WV = .50 + ((maxg – g)/maxg) // velocity weight 

33 I = length of c 

34 set r1 = random number from 0 to 1.0 

35 set r2 = random number from 0 to 1.0 

36 // Update the particle’s velocity & position 

37 for i from 0 until I do 

38   set lnudge = (WL*r1*(lbest[i]-c[i])) 

39   set gnudge = (WG*r2*(gbest[i]-c[i])) 

40   set v[i] = (WV*v[i])+lnudge+gnudge 

41   set c[i] = c[i]+v[i] 

42 end for i 

43 // Score the new particle position 

44 set in.c = c 

45 score(in) 

46 // Update the best particle positions 

47 if (fitness(c)>fitness(lbest)) then lbest = c end if 

48 if (fitness(c)>fitness(gbest)) then gbest = c end if 

49 in.best = gbest 

50 set in.pool.last = c 

51 set in.pool.last→best = lbest 

52 set in.pool.last→v = v 

53 // Enforce elitist constant pool 

54 sort in.pool by fitness score 
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55 truncate in.pool to S most fit constant vectors 

56 set in.c = in.pool.first 

57 set in.sexp = convertToSExp(in) 

58 // Enforce iterative search of constant pool 

59 set Ic = Ic + 1 

60 if (Ic>=S) then set Ic = 0 end if 

61 return in 

 

11. Sample Test Problems 
Several sample test problems have been collected upon which we 

can compare the performance of standard GP symbolic regression 

and hybrid AEG symbolic regression. Each of these test problems 

contains an embedded real constant which greatly affects the 

behavior of the formula during regression. If our theory is correct, 

these test problems should receive better results with AEG 

symbolic regression than with standard GP symbolic regression. 

The test problems are as follows. 

14.1 y = -2.3 + (0.13*sin(4.1*x2)) 

14.2 y = 3.0 + (2.13*log(1.3+x4)) 

14.3 y = 2.0 - (2.1*cos(9.8/x0)) 

 

Two symbolic regressions are performed for each test problem: 

standard GP symbolic regression, and AEG symbolic regression 

(using the Bees Algorithm 6). Clearly the AEG symbolic 

regressions perform much better than standard GP symbolic 

regression. Table 1 shows the results. 

Table 1: Sample Test Problem Regressions  

Formula 
NLSE

GP 

RSQ 

GP 

NLSE

AEG 

RSQ 

AEG 

14.1 .47 .77 0.0 1.0 

14.2 .18 .96 0.0 1.0 

14.3 .36 .81 0.0 1.0 

Note: NLSE is the least squared error divided by the standard 

deviation of Y, and RSQ is the R-Square statistic from the 

regression. An NLSE of 0.0 is perfect while an RSQ of 1.0 is 

perfect. 

 

Clearly the AEG symbolic regression runs are discovering and 

optimizing the embedded constants correctly; however, the 

standard GP symbolic regression runs are unable to optimize the 

constants and get confused. It is simply too difficult for standard 

GP to optimize these difficult embedded constants using only 

mutation and crossover. Furthermore, the standard GP runs 

produce estimators which are far from the correct form. The 

following are the top five estimators, produced by the standard GP 

symbolic regression, for test problem (14.1). 

14.1.1 y = 4.6+(-2.45*(sqrt(log(x0)))); 

14.1.2 y = -11919+(-0.86*((-13824+log(x0)))); 

14.1.3 y = -1891+(-0.8624*((-2197+log(x0)))); 

14.1.4 y = -2073+(-0.8624*((-2401+log(x0)))); 

14.1.5 y = -1749+(-0.8624*((-2025+log(x0)))); 

 

The results are so absolute that statistical analysis is unnecessary. 

Standard GP symbolic regression cannot solve these problems, 

while AEG symbolic regression always solves these problems 

exactly. Furthermore, it is clear that the standard GP run is trying 

to optimize constants but it has gotten stuck in a local minimum 

with the wrong formula and its population of champions is 

dominated by the attempt to optimize constants rather than trying 

to find a better fitting formula.  

 

Incidentally, it made no difference when the Bees Algorithm was 

replaced with the Differential Evolution Algorithm or with the 

Particle Swarm Algorithm. The results of an AEG symbolic 

regression on the sample test problems was a perfect score no 

matter which swarm algorithm was chosen.   

 

Furthermore, on the issue of scientific reproducibility, we have 

included detailed algorithms in this chapter. No matter what 

random seed is used, standard GP SR will not optimize sample 

problems 14.1, 14.2, and 14.3 in any practical time. This is 

because the population operators available to standard GP SR do 

not manage imbedded constants. Plus no matter what random seed 

is used, SR with any one of the three popular swarm algorithms 

will optimize the sample problems 14.1, 14.2, and 14.3 very 

quickly. These results are easily scientifically reproduced. 

 

Now that we have tested AEG symbolic regression on several 

sample test problems, achieving much better performance than 

standard GP symbolic regression, it is time to compare AEG with 

standard GP symbolic regression on a real world investing 

problem: estimating forward 12 month earnings per share for a 

database of companies between 1990 and 2009. We begin with 

some background on investing. In addition, we will also compare 

the results of the three different swarm intelligence algorithms. 

 

12. Investing Strategies 
Value investing [1] has produced several of the wealthiest 

investors in the world including Warren Buffet. Nevertheless, 

value investing has a host of competing strategies including 

momentum [16] and hedging [17]. 

One of the most difficult challenges in devising a securities 

investing strategy is the a priori identification of pending regime 

changes. For instance, momentum investing strategies were very 

profitable in the 1990's and not so profitable in the 2000's while 

value investing strategies were not so profitable in the 1990's but 

turned profitable in the 2000's. Long Short hedging strategies 

were profitable in the 1990's and early 2000's but collapsed 

dramatically in the late 2007 thru 2008 period. Knowing when to 

switch from Momentum to Value, Value to Hedging, and Hedging 

back to Value was critical for making consistent above average 

profits during the twenty year period from 1990 thru 2009. 

The challenge becomes even more difficult when one adds the 

numerous technical and fundamental buy/sell triggers to currently 

popular active management investing strategies. Bollinger Bands, 

MACD, Earning Surprises, etc. all have complex and dramatic 

effects on the implementation of securities investing strategies, 

and all are vulnerable to regime changes. The question arises, "Is 

there a simple securities investing strategy which is less 

vulnerable to regime changes than other strategies?". 

An idealized value investing hypothesis is put forward: "Given 

perfect foresight, buying stocks with the best future earning yield 

(Next12MoEPS/CurrentPrice) and holding for 12 months will 

produce above average securities investing returns".  
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Using our database of the 1500 Valueline stocks from 1986 thru 

2009, we studied three ideal concentrated portfolios: five, twenty 

five, and fifty stock portfolios. Each of these idealized 

concentrated portfolios are sampled each month for the twenty 

years from 1990 thru 2009. Fixed holding periods of one month, 

one quarter, and one year were examined. The per annum 

compound return for each decade and each holding period are 

shown in Table 2 along with the compounded returns, including 

dividends, of the Standard & Poor's 500 for each decade. 

 

Table 2: Returns for idealize future earnings yield  

Holding 

period 
Decade 

5 

stocks 

25 

Stocks 

50 

Stocks 

month 1990s 76% 69% 63% 

month 2000s 120% 69% 53% 

quarter 1990s 58% 73% 64% 

quarter 2000s 69% 74% 53% 

year 1990s 48% 46% 41% 

year 2000s 103% 61% 45% 

SP500 1990s 18% 18% 18% 

SP500 2000s (2%) (2%) (2%) 

Note: Per annum compound returns for each decade.  

 

The data supports the conclusion that the ideal hypothesis yields 

highly above average investing profits for all portfolio sizes and 

all holding periods across both decades. Furthermore the ideal 

hypothesis appears less vulnerable to regime changes than many 

other popular active securities investment strategies given that the 

1990s decade was a raging bull environment while the 2000s 

decade was a terrible bear environment.  

13. Buying Current Earnings Yield 
Of course the ideal hypothesis is impossible to implement because 

it requires perfect foresight which is, in the absence of time travel, 

unobtainable. Nevertheless the ideal hypothesis represents the 

theoretical upper limit on the profits realizable from a strategy of 

buying future revenue cheaply; yet, the theoretical profits are so 

rich that one cannot help but ask the question, "Are there revenue 

prediction models which will allow one to capture some portion of 

the profits from the ideal hypothesis?". 

The easiest revenue prediction model involves simply using the 

current year's trailing 12 month revenue as a proxy for future 

revenue. 

The data supports the conclusion that even using this current 

revenue proxy model buying the top five, twenty five, and fifty 

stocks with the highest (current12MoEPS/currentPrice) 

produces above average securities investing profits, as least for 

the 1500 Valueline stocks, as shown in Table 3. 

Table 3: Returns for current revenue prediction  

Holding 

period 
Decade 

5 

stocks 

25 

Stocks 

50 

Stocks 

month 1990s 29.0% 16.5% 16.6% 

month 2000s 8.2% 11.4% 15.4% 

quarter 1990s 41.7% 14.9% 14.9% 

quarter 2000s 22.7% 13.5% 15.6% 

year 1990s 36.4% 17.6% 15.6% 

year 2000s 42.1% 19.7% 17.4% 

SP500 1990s 18% 18% 18% 

SP500 2000s (2%) (2%) (2%) 

Note: Per annum compound returns for each decade.  

 

Clearly using this current revenue prediction model buying the top 

five, twenty five, and fifty stocks with the highest 

(current12MoEPS/currentPrice), produces above average 

securities investing profits, in most cases, especially with one year 

holding periods.  

Like buying stocks with the best future earning yield 

(Next12MoEPS/CurrentPrice), buying current earnings yield 

(current12MoEPS/currentPrice) is an ideal method. By ideal we 

mean that all information is known and exact. There is no 

predictive aspect, no guess work. We already know what current 

earnings are for any stock.  

Nevertheless, buying a stock with low PE but whose future 12 

month earnings will plummet bringing on bankruptcy is an 

obviously poor choice. So why is low PE investing so successful 

given that future 12 month earnings can vary significantly? 

Placing current earnings yield investing in this context puts a new 

spin on this standard value investing measure. In this context we 

are saying that current earnings yield (also known as low PE 

investing) works precisely to the extent that current earnings are 

a reasonable predictor of future earnings! In situations where 

current earnings are NOT a good predictor of future earnings, then 

current earnings yield investing looses it efficacy. 

This agrees with our common sense understanding. For instance, 

given two stocks with the same high current earnings yield, where 

one will go bankrupt next year and the other will double its 

earnings next year; we would prefer the stock whose earnings will 

double. Implying that, in the ideal, current earnings are just a data 

point. We want to buy future earnings cheap! 

Precisely because the per annum returns from this current revenue 

prediction model are far less than the returns achieved with 

perfect prescience, we must now look for more accurate methods 

of net revenue prediction. 

14. Future Revenue Prediction Inputs 
One very simplistic revenue prediction input model involves 

simply adding last year's revenue delta to current revenue as a 

prediction of future revenue, as follows: 

15  2010EPS = (2009EPS-2008EPS)+2009EPS 

...to generalize, we have: 

15.1  forwardRevenue = (revenue-pastRevenue)+revenue 

Another simple revenue prediction input is the broker estimates. 

Each week there appears a broker consensus estimate for the next 

12Mo EPS for each of the stocks in our database. This broker 

revenue prediction can be used as a model for future revenue. 
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If we combine a number of these simple future revenue prediction 

inputs together we can construct a set of consensus inputs for 

prediction of future revenue. Constructing this consensus revenue 

inputs requires the following components. 

16 margin = (currentEPS/currentSPS) 

17 brokerEPS = broker consensus estimate 

18 forwardEPS = (currentEPS-pastEPS)+currentEPS 

19 projectEPS = (4*(currentEPS-pastQtrEPS))+currentEPS 

20 forwardSPS = (currentSPS-pastSPS)+currentSPS 

21 projectSPS = (4*(currentSPS-pastQtrSPS))+currentSPS 

22 forwardSEPS = forwardSPS*margin 

23 projectSEPS = projectSPS*margin 

The five bolded elements above (brokerEPS, forwardEPS, 

projectEPS, forwardSEPS, and projectSEPS) are the consensus 

inputs to all of our future revenue prediction efforts in the 

remainder of this chapter. 

15. Future Revenue: GP-only 
Each week we can construct a GP-only symbolic regression 

estimate (using Algorithm 2) for next 12Mo EPS for each of the 

stocks in our database, using the following five inputs as 

dependent variables:  brokerEPS, forwardEPS, projectEPS, 

forwardSEPS, and projectSEPS. Each week we train a symbolic 

regression model on approximately 375,000 training examples 

(250 weeks of backward historical data times approximately 1,500 

stocks), and each week we use the newly trained symbolic 

regression model to predict the earnings per share of each stock in 

our database for the new week. This is a text book case of in-

sample-training with out-of-sample-testing using a sliding forward 

250 week training window. 

The per annum returns using this symbolic regression revenue 

prediction model buying the top five , twenty five, and fifty stocks 

with the highest (regression12MoEPS/currentPrice) produces 

above average securities investing profits as shown in Table 4. 

 

Table 4: Returns for GP-only  

Holding 

period 
Decade 

5 

stocks 

25 

Stocks 

50 

Stocks 

month 1990s 33.2% 17.9% 18.2% 

month 2000s 9.7% 13.2% 17.6% 

quarter 1990s 43.9% 16.8% 15.1% 

quarter 2000s 25.6% 15.3% 18.5% 

year 1990s 39.2% 18.8% 17.8% 

year 2000s 45.6% 21.2% 18.9% 

SP500 1990s 18% 18% 18% 

SP500 2000s (2%) (2%) (2%) 

Note: Per annum compound returns for each decade.  

 

Clearly using the GP-only symbolic regression revenue prediction 

model buying the top five , twenty five, and fifty stocks with the 

highest (regression12MoEPS/currentPrice) produces above 

average securities investing profits, in most cases. In fact, 

compared with all simple prediction methods shown so far, for 

reasonably diversified fifty stock portfolios, the annual hold 

returns are the best we have seen so far.  

Nevertheless, despite the satisfying accuracy and high returns, 

there are issues with the GP symbolic regression model. The main 

issue with the GP regression approach is a fundamental issue of 

believability. Every mathematical model, however highly 

correlated with market behavior over a period, must withstand the 

test of believability.  

Because the standard GP process is difficult to constrain, many of 

the basis functions reach sizes and complexities beyond 

reasonable. For instance, in March of 1998 the GP regression 

creates an earnings model containing the term: 

tanh(forwardEPS/brokerEPS). This strains the credulity of any 

fund portfolio manager and is very difficult to explain using 

standard financial concepts. It clearly works statistically in that 

training period; but, it is not believable.  

Worse still, in order to achieve its high accuracy, the GP 

regression process drives the coefficients on some of the basis 

functions to negative values. This also creates a financial model 

which does not make common sense, and is therefore 

unbelievable. When the champion estimator, produced by 

symbolic regression is ridiculous, it undermines the acceptance of 

the whole symbolic regression process vis a vis investing, and no 

fund manager will risk assets based upon the SR models.  

For instance, for the month of April 2001 the GP regression 

method creates an earnings model with a highly weighted basis 

function where the coefficient for forwardEPS is negative. …  

24 eps = …+(-1.293*forwardEPS2)+…  

Since forwardEPS is the result of adding last year’s earnings 

growth to this year’s earnings to get an estimate for next year, a 

negative coefficient has the SR model telling us that companies 

with big earnings growth last year are bad! AND the larger last 

year’s earnings growth the worse the model penalizes the 

company.  

A statistician will immediately suspect over fitting in this SR 

champion model. Professional investors are less kind in their 

incredulity. Unfortunately standard GP symbolic regression 

produces many champions with these believability problems. 

Many of the champion estimator models produced by standard GP 

symbolic regression simply do not pass the common sense test. 

Investing large amounts of risk assets based on these GP models 

is very problematic because of the GP model’s fundamental lack 

of believability. Even in the unlikely event that management were 

to sign off, regulatory and compliance sign off would be 

impossible.   

16. Basis Function Constraints using AEG 
Abstract Expression Grammars (AEGs) can be used to constrain 

the basis functions searched in a symbolic regression so that the 

believability issues with standard GP are resolved [6] and [13]. In 

our case it is reasonable and believable to constrain the basis 

functions to either sigmoid or Classification and Regression Tree 

(CART) sigmoid. 
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Using our five future revenue predictions as inputs to a nonlinear 

sigmoid regression, we can construct a more believable prediction 

model. Our first attempt will be to stay with an almost linear 

regression, but where the model coefficients are forced into the 

sigmoid domain. The model coefficients cannot go negative and 

they cannot rise above 1.0. This creates a more believable 

regression model in which the coefficients act more like 

significance weights attached to each of the five input EPS 

predictions as follows. 

25 eps = c1*brokerEPS+ c2*forwardEPS+ c3*projectEPS 

                 + c4*forwardSEPS+ c5*projectSEPS 

                 where  0 ≤ ci ≤ 1.0 for 1≤ i ≤ 5  

In this sigmoid linear regression model each coefficient represents 

the significance given to one of the five input predictions. 

Therefore if c1=.2 while c2=.4, the model is saying that the higher 

the brokerEPS estimate and the higher the forwardEPS estimate 

the better; BUT, the model gives twice as much weight to 

forwardEPS estimates as it does to brokerEPS estimates. This is a 

far more intuitively believable model.  

Also it is possible to construct a more sophisticated sigmoid 

Classification and Regression Tree (CART) model by using the 

sigmoid model (24) as a template for four leaf nodes of a simple 

classification tree as follows. 

25.1 µ1 = c1*brokerEPS+ c2*forwardEPS+ c3*projectEPS 

                 + c4*forwardSEPS+ c5*projectSEPS 

                 where  0 ≤ ci ≤ 1.0 for 1≤ i ≤ 5  

25.2 µ2 = c6*brokerEPS+ c7*forwardEPS+ c8*projectEPS 

                 + c9*forwardSEPS+ c10*projectSEPS 

                 where  0 ≤ ci ≤ 1.0 for 6≤ i ≤ 10  

25.3 µ3 = c11*brokerEPS+ c12*forwardEPS+ c13*projectEPS 

                 + c14*forwardSEPS+ c15*projectSEPS 

                 where  0 ≤ ci ≤ 1.0 for 11≤ i ≤ 15  

25.4 µ4 = c16*brokerEPS+ c17*forwardEPS+ c18*projectEPS 

                 + c19*forwardSEPS+ c20*projectSEPS 

                 where  0 ≤ ci ≤ 1.0 for 16≤ i ≤ 20  

We can then place these sigmoid leaf nodes into a simple CART 

formula as follows. 

25.5 eps = (v1<v2)?((v3<v4)?µ1:µ2):(v5<v6)?µ3:µ4) 

where  V = {brokerEPS,forwardEPS,projectEPS, 

             forwardSEPS,projectSEPS}   

                 where  vi ɛ V for 1≤ i ≤ 4   

In this sigmoid CART nonlinear regression model each of the four 

leaf nodes is a sigmoid nonlinear model of the type shown in (24). 

Each of the decision variables, vi, is one of the five possible 

inputs.  

By constraining the basis functions searched to be either sigmoid 

or CART sigmoid, we automatically eliminate the issues 

associated with GP-only future revenue prediction, and we 

achieve future earnings models which pass the test all important 

test of believability.  

Unfortunately, having imposed these important basis function 

constraints, we encounter an additional issue. GP-only symbolic 

regression is very poor at evolving real number constants. These 

constraints place a heavy emphasis on the evolution of real 

number constants within the basis function and its sigmoid 

coefficients. Therefore we must add, to our hybrid AEG 

algorithm, evolutionary techniques which are better able to evolve 

real number constants. The remainder of this chapter will compare 

the efficacy of three hybrid evolutionary algorithms on the task of 

future revenue prediction.  

17. GP with Particle Swarm 
Testing the algorithm in (6.1) and limiting our basis functions to 

either sigmoid or CART sigmoid as in Section 13, each week we 

can construct a symbolic regression estimate for next 12Mo EPS 

for each of the stocks in our database, using the following five 

inputs as dependent variables:  brokerEPS, forwardEPS, 

projectEPS, forwardSEPS, and projectSEPS.  

Each week we train a symbolic regression model on 

approximately 375,000 training examples (250 weeks of 

backward historical data times approximately 1,500 stocks), and 

each week we use the newly trained symbolic regression model to 

predict the earnings per share of each stock in our database for the 

new week.  

The per annum returns using this symbolic regression revenue 

prediction model buying the top five , twenty five, and fifty stocks 

with the highest (regression12MoEPS/currentPrice) produces 

above average securities investing profits as shown in Table 5. 

 

 

Table 5: Returns for GP with Particle Swarm  

Holding 

period 
Decade 

5 

stocks 

25 

Stocks 

50 

Stocks 

month 1990s 21.2% 26.1% 22.2% 

month 2000s 7.6% 13.9% 17.8% 

quarter 1990s 12.9% 29.2% 25.1% 

quarter 2000s 9.2% 14.7% 19.2% 

year 1990s 37.7% 26.3% 21.3% 

year 2000s 5.6% 22.5% 22.6% 

SP500 1990s 18% 18% 18% 

SP500 2000s (2%) (2%) (2%) 

Note: Per annum compound returns for each decade.  

 

Clearly using the GP with particle swarm symbolic regression 

revenue prediction model buying the top five , twenty five, and 

fifty stocks with the highest (regression12MoEPS/currentPrice) 

produces above average securities investing profits, in most cases. 

In fact, compared with GP-only prediction methods, adding 

particle swarm has increased accuracy significantly – while 

adding believability.  



 

15 

 

18. GP with Differential Evolution 
Testing the algorithm in (6) and limiting our basis functions to 

either sigmoid or CART sigmoid as in Section 13, each week we 

can construct a symbolic regression estimate for next 12Mo EPS 

for each of the stocks in our database, using the following five 

inputs as dependent variables:  brokerEPS, forwardEPS, 

projectEPS, forwardSEPS, and projectSEPS.  

Each week we train a symbolic regression model on 

approximately 375,000 training examples (250 weeks of 

backward historical data times approximately 1,500 stocks), and 

each week we use the newly trained symbolic regression model to 

predict the earnings per share of each stock in our database for the 

new week.  

The per annum returns using this symbolic regression revenue 

prediction model buying the top five , twenty five, and fifty stocks 

with the highest (regression12MoEPS/currentPrice) produces 

above average securities investing profits as shown in Table 6. 

 

Table 6: Returns for GP with Differential Evolution  

Holding 

period 
Decade 

5 

stocks 

25 

Stocks 

50 

Stocks 

month 1990s 20.6% 26.8% 22.6% 

month 2000s 7.4% 14.8% 18.6% 

quarter 1990s 13.6% 29.0% 24.3% 

quarter 2000s 9.6% 14.2% 18.8% 

year 1990s 37.9% 27.4% 23.8% 

year 2000s 5.3% 21.3% 21.5% 

SP500 1990s 18% 18% 18% 

SP500 2000s (2%) (2%) (2%) 

Note: Per annum compound returns for each decade.  

 

Clearly using the GP with differential evolution symbolic 

regression revenue prediction model buying the top five , twenty 

five, and fifty stocks with the highest 

(regression12MoEPS/currentPrice) produces above average 

securities investing profits, in most cases. However the GP with 

differential evolution algorithm does not yield a significant 

improvement over GP with particle swarm.  

19. GP with Bees Algorithm 
Testing the algorithm in (7) and limiting our basis functions to 

either sigmoid or CART sigmoid as in Section 13, each week we 

can construct a symbolic regression estimate for next 12Mo EPS 

for each of the stocks in our database, using the following five 

inputs as dependent variables:  brokerEPS, forwardEPS, 

projectEPS, forwardSEPS, and projectSEPS.  

Each week we train a symbolic regression model on 

approximately 375,000 training examples (250 weeks of 

backward historical data times approximately 1,500 stocks), and 

each week we use the newly trained symbolic regression model to 

predict the earnings per share of each stock in our database for the 

new week.  

The per annum returns using this symbolic regression revenue 

prediction model buying the top five , twenty five, and fifty stocks 

with the highest (regression12MoEPS/currentPrice) produces 

above average securities investing profits as shown in Table 7. 

 

Table 7: Returns for GP with Bees Algorithm  

Holding 

period 
Decade 

5 

stocks 

25 

Stocks 

50 

Stocks 

month 1990s 107.6% 66.7% 43.7% 

month 2000s 9.8% 16.9% 19.3% 

quarter 1990s 51.3% 37.9% 31.5% 

quarter 2000s 10.5% 18.3% 19.4% 

year 1990s 26.8% 30.0% 22.2% 

year 2000s 15.4% 28.9% 24.0% 

SP500 1990s 18% 18% 18% 

SP500 2000s (2%) (2%) (2%) 

Note: Per annum compound returns for each decade.  

 

Clearly using the GP with Bees Algorithm symbolic regression 

revenue prediction model buying the top five , twenty five, and 

fifty stocks with the highest (regression12MoEPS/currentPrice) 

produces above average securities investing profits, in most cases. 

In fact, compared with all other prediction methods (referring to 

fifty stock portfolios, which have less statistical variance than 

smaller portfolios) adding the Bees algorithm has increased 

accuracy significantly over GP-only and is a slight improvement 

over GP with particle swarm and GP with differential evolution. 

However, the Bees slight performance improvement over DE and 

PSO is not statistically significant under rigorous statistical 

analysis. 

20. Summary 
Having no population operators of its own which specialize in 

constant optimization, it is our contention that standard GP 

symbolic regression can benefit greatly when enhanced with 

swarm intelligence algorithms specializing in constant 

optimization. A method of integrating standard GP with swarm 

intelligence, Abstract Expression Grammars is introduced. 

The importance of constants in symbolic regression is studied. It 

is shown that the size of the search space, for even simple 

financial applications, is very large and that a significant portion 

of that size is due to the presence of constants. 

Several sample test problems, with embedded constants, are 

presented with standard GP symbolic regression unable to solve 

any of the problems while AEG enhanced SR is always able to 

solve each of the problems exactly. It made no difference which 

swarm algorithm was used – DE, Bees, or PSO. It was the 

presence of AEG integrated swarm intelligence which made the 

test problems tractable. 

Theoretical, methodological, and regulatory issues applying 

standard GP symbolic regression to an important investment 

finance application are discussed. Symbolic regression is 

enhanced, using AEG, to be applicable to the prediction of 

forward 12 month earnings per share. A number of bloat and 
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believability issues applying SR to predicting forward 12 month 

earnings are addressed and solved with AEG.   

AEG enhanced symbolic regression is used to predict forward 12 

month earnings per share on approximately 1500 stocks from 

1990 to 2009. Three distinct swarm intelligence algorithms are 

compared: DE, Bees, and PSO. All three swarm algorithms 

perform well, providing earnings predictions in a format easily 

acceptable by portfolio managers and regulatory compliance 

officers. 

Incidentally, comparing t-statistics, f-statistics, variance, 

information ratio and p-values shows it made no difference when 

the Bees Algorithm was replaced with the Differential Evolution 

Algorithm or with the Particle Swarm Algorithm. The results of 

an AEG symbolic regression on predicting future 12Mo eps was 

statistically similar for all swarm algorithms compared. It was the 

integration with any of the three swarm algorithms which made 

symbolic regression effective for forward earning prediction.  

 

Enhancing standard GP with Abstract Expression Grammar 

hybrid algorithms solves a number of regression accuracy, 

believability, and regulatory issues when using symbolic 

regression in financial applications. Based upon our experiments 

in this chapter, standard GP symbolic regression has serious issues 

when applied to financial applications; while, swarm enhanced SR 

shows real promise in the financial domain. 

 

Furthermore using AEG to add swarm intelligence algorithms to 

SR significantly enhanced accuracy in future 12 month revenue 

prediction and produced above average securities investing profits 

in the historical period 1990 to 2009. Significantly this superior 

performance was undeterred by the bearish market environment of 

the 200 decade.  

Directions for future research include investigating whether or not 

there are other swarm algorithms which would show real 

statistical significantly improved results over DE, Bees, and PSO? 

Is AEG the optimal GP SI integration approach to symbolic 

regression, or is there another integration approach which is 

superior?  
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